
Object Oriented Programming TDA547

Krasimir Angelov, tel. 070-234-24-78

2015-08-21

The total number of points is 40. 20 points certainly guarantee a pass.
27p correspond to grade 4 and 32p to grade 5.

No other help materials except an English Dictionary are allowed. Write
clean and readable Java code. Trivial syntax errors will be tolerated without
affecting the grades. You don’t have to comment your code unless if you
really want to.

1. Read the following program:

public class Question1 {

public static int[] reorder(int[] a) {

int half = a.length/2;

int[] b = new int[a.length];

for (int i = 0; i < half; i ++) {

b[i] = a[i*2];

b[i+half] = a[i*2+1];

}

return b;

}

public static void main(String[] args) {

int[] a = new int[] {1,2,8,0,0,1,8,5};

a = reorder(a);

for (int i = 0; i < a.length; i++) {

System.out.println(a[i]);

}

}

}

What will the program print when it is executed? (4p)

1



2. In this task we do simple array processing:

• The range size of a sequence of numbers is the difference between
the biggest and the smallest element in the sequence. For example
the range size of 1 7 3 5 is 6 because 7-1 = 6. Implement the static
method:

public static int getRangeSize(int[] a)

which returns the range size. The numbers in the sequence are
arbitrary integers, i.e. they could be negative as well as positive.
By definition the range size of an empty sequence is zero. (4p)

• Implement a class Question2 which can be used to test the method
getRangeSize. The class should be possible to run like this:

> java Question2 1 7 3 5

6

i.e. it takes the sequence of numbers from the command line
arguments and prints the range size. (4p)

3. Some old computer graphics systems used the concept of turtle graph-
ics. The “turtle” is a software object which can move over a plane and
draw pictures with a pen. It can follow three commands: turnLeft,
turnRight and forward N. The first two commands tell the turtle to
turn to the left/right while the last tells it to go forward with N number
of steps. Assuming that you have the enumeration type:

enum Direction {NORTH, WEST, EAST, SOUTH};

implement a class Turtle, which maintains the current coordinates
and direction of the turtle. When a new turtle is created its initial
coordinates must be X=0 and Y=0 and the direction must be NORTH.
Implement the methods:

• void turnLeft();

• void forward(int steps);

which correspond to two of the commands (turnRight is very similar
and that is why we just skip it here).

Note that, at all times, the turtle is facing a particular direction, and
the behaviour of each of the commands depends on the current direc-
tion. For convenience the effect of each command depending on the

2



current direction is shown in the table:

turnLeft turnRight forward
NORTH face WEST face EAST increase Y
SOUTH face EAST face WEST decrease Y
EAST face NORTH face SOUTH increase X
WEST face SOUTH face NORTH decrease X

There are also two examples:

• forward 10 will move it to (0,10) because initially it was at (0,0)
and it was looking North. Movement to the north means increase
in Y.

• turnLeft; forward 10 will move it to (-10, 0). The difference
is that now turnLeft has caused it to look to the West which
means that forward 10 will decrease the X coordinate instead of
increasing Y as in the first example.

(8p)

4. In this task you have to implement Knuth’s algorithm for shuffling a
deck of cards. The deck is represented as an array of N integers. The
algorithm proceeds in N steps where at each step the last I cards are
properly shuffled while the first (N-I) are yet to be shuffled. This is
illustrated with the example:

1 2 3 4 5 6 7 8| swap 6 and 8
1 2 3 4 5 8 7|6 swap 7 and 2
1 7 3 4 5 8|2 6 swap 8 and 8
1 7 3 4 5|8 2 6 swap 5 and 1
5 7 3 4|1 8 2 6 swap 4 and 3
5 7 4|3 1 8 2 6 swap 4 and 4
5 7|4 3 1 8 2 6 swap 7 and 5
7|5 4 3 1 8 2 6

Here each row represents a step in the shuffling process. The cards
to the left of the bar symbol (|) are yet to be shuffled, while those to
the right are already properly shuffled. To proceed from one step to
another we pick a random card from the unshuffled part and we swap
it with the card that is immediately before the bar. After that we move
the bar to the left. When there is only one card before the bar then
the deck is completely shuffled.

Implement this algorithm with the static method:

3



void shuffle(int[] a);

where the array a must be shuffled after the execution of the method.

(10p)

5. The file students.txt contains information for students and their
grades in different courses. Each line contains the name of a student,
followed by the number of courses that he/she has passed, and a list of
codes and grades for the passed courses. For example:

John 3 TDA547 5 DAT170 5 TDA233 4

Eva 2 TDA547 4 DAT170 5

Here John has passed three courses TDA547, DAT170 and TDA233
with grades 5, 5 and 4. Eva has passed two courses TDA547 and
DAT170 with grades 4 and 5. Assuming that there is a class:

public class Student {

public Student(String name);

public void addCourse(String code, int grade);

}

implement the static method:

List loadStudents(File file) throws FileNotFoundException;

which loads the file with students and returns a list with objects of
type Student. In order to make things simple, you can assume that
the student names consist of only a single word. The course codes are
also single words. This means that it is enough to use the methods
next() and nextInt() of Scanner to parse the content of the file.

4


