Exam TDA547, DAT170

Krasimir Angelov, tel. 073-8228-179
2014-03-15

The total number of points is 40. 20 points certainly guarantee a pass.
27p correspond to grade 4 and 32p to grade 5.

No other help materials except an English Dictionary are allowed. Write
clean and readable Java code. Trivial syntax errors will be tolerated without
affecting the grades. You don’t have to comment your code unless if you
really want to.

1. Read the following program:

public class Questionl {
public static int delta(int[] a) {
int min = Integer .MIN_VALUE;
int max = Integer.MAX_VALUE;
for (int i = 0; i < a.length-1; i ++) {
if (ali] < min)
min = ali];
else if (a[i] > max)
max = al[i];
}

return (max-min);

by

public static void main(String[] args) {
int[] a = {3, 5, -8, 10};
System.out.println(delta(a));

¥

What will the program print when it is executed? (4p)

2. In this task we do some simple array processing:

1



e A harmonic array is an array in which each element is equal to
the average of the values of its neighbours. The elements on the
border, i.e. the first and the last element are ignored. For example,
the array:

2.1 3.3 4.5 5.7

is harmonic because 3.3 = (2.1 + 4.5)/2and 4.5 = (3.3+5.7)/2.
Write a method:

public static boolean isHarmonic(double[] a)

which returns true if the array a is a harmonic array. (4p)

e Implement a class Question2 which can be used to test whether

an array is harmonic or not. The class should be possible to run
like this:

> java Question2 2.1 3.3 4.5 5.7
true

i.e. it takes the array of numbers from the command line argu-
ments and prints true if the array is harmonic and false if it is
not. (4p)

3. In group work we have to work in teams. Every team must have a leader
who assigns different tasks to the members of the team. To make things
simple we assume that the leader of each team is the oldest person in
the group. If you already have the class:

public class Person {
public String getName();
public int getAge();

then implement a class Team with the following methods:

e void addPerson(Person person) - to add another person in the
team

e Person getLeader() - to return the leader of the team, i.e. the
oldest person in the group. If there are several people of the same
age then just return any of them.

e Person getVolunteer() - to return a random member of the team.
Each call to this method should return a different member.



e void print(PrintStream out) - to print the names of the members
in the team. The name of the leader must be followed by a star.
Example

Eva

Emil

John *
Christina

(10p)

. A prime number is an integer that is divisible only by one and by itself.
The Eratosthenes sieve is a classical algorithm for finding all prime
numbers smaller than a fixed n. Proceed as follows:

(a) Start with the sequence of numbers from 2 (the smallest prime
number) to n.

(b) Look at the first number and strike out all numbers in the rest of
the sequence that are multiples of this number.

(c) Repeat (b) with the next number in the sequence which is not
striked out yet.

At the end the only numbers which are not striked out will be the prime

numbers. An example for the first three iterations is this:
2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 3 45 6 78 9 1 11 2 13 4 15

2 3 45 6 789 1 11 2 13 4 15
Here we start with 2 and strike out all numbers that are even. On the
next step the next unstriked number is 3 and then we strike out all
numbers divisible by 3.

Hint: represent the sequence of numbers with a boolean array where
there is one element for every number in the sequence. If the number is
striked out then the element should be true, otherwise false. Use two
nested loops, one which iterates over the whole sequence and another
which strikes out the multiples.

Implement:

(a) a class Primes with a constructor which takes as a parameter the
upper bound n. The constructor must create and initialize the
boolean array. (8p for the full solution and 2p if you only define
the class and create the array in the constructor)



(b) a method boolean isPrime(int i) which returns true if i is a
prime number. (2p)

5. Many algorithms for processing text documents rely on statistical in-
formation. The simplest example is the frequency with which a single
word appears in a given text. Implement a method:

HashMap wordCounts(Scanner in)

which uses the scanner to read all words in a text and returns a hash
map whose keys are the words in the text and the values are integers
corresponding to the number of times each word appears in the text.

(8p)
Hint: here by word we understand a string returned by the next ()
method for Scanner.



