
Introduction to Part 2 & Recap of Part 1

Lecture 9 of TDA 540 (Objektorienterad Programmering)

Carlo A. Furia Alex Gerdes

Chalmers University of Technology – Gothenburg University
Fall 2016

Welcome to Part 2 of the course!

The organization of Part 2 is very similar to Part 1:

• 6 lectures
Note: 8 November no lecture!

• 5 labs

• lectures and lecture slides in English, but everything else in
Swedish

• we will occasionally do short quizzes in class using kahoot.it

• the quizzes are anonymous and not graded:
only to get an idea of what is clear and what not

• hopefully they’ll make lectures a bit more entertaining!

• all the organizational details remain as in Part 1

1 / 41

kahoot.it

Welcome to Part 2 of the course!

Main topics in Part 2:

• review of Part 1 (today)

• object-oriented features of Java
• classes, attributes, and methods
• inheritance and polymorphism
• abstraction and interfaces

• event-driven programming

• error handling (exceptions)

2 / 41

Suggestions

• The Java language is pretty big
• in class, we will focus on significant examples without always

covering all possible cases
• look up the official documentation, as well as resources such as
stackoverflow.com

• Ask questions and try out code snippets that we show in class

• There is a bit of overlapping between Part 1 and Part 2, as in
Part 2 we will revise and extend some topics

• Establishing basic terminology and concepts is an important goal
of the course

3 / 41

stackoverflow.com

Pop quiz!
1. Go to kahoot.it

2. Enter PIN shown on projector screen

3. Pick a nickname and go!

kahoot.it

Variables

Variables are a fundamental abstraction of data in programs.

• A variable represents a memory location storing a value
that can be read and written to.

• A variable has a name (identifier), which provides a way to
access the variable’s content within a program’s text.

• A variable has a type, which constraints what kind of data
(possible values) the variable’s memory location can contain.

10

int speed

type name

value

5 / 41

Indentifiers

Variables, as well as other entities we define in a program such as
user-defined classes, have names given by an identifier.

Java identifiers rules:

• identifiers are case sensitive: speed and SPEED are different
identifiers

• the first character must be a letter, underscore _, or dollar sign $

• the following characters can be numbers, letters, underscore _,
or dollar sign $

6 / 41

A variable’s life

A variable:

• Must be declared before being used.

• May be initialized upon being declared.

• Its value can be read in an expression.

• Its value can be modified in an assignment.

OPERATION CODE EXAMPLE

declaration int speed; reserve room in memory for a
variable with name speed and
type int

initialization int speed = 10; set to 10 the initial value of speed
read/access if (speed > 5) use the current value of speed in

an expression
write/modify speed = 8; change to 8 the value of speed

7 / 41

Declarations and Initialization

Variables must be declared before being used.
A variable declaration provides:

• the variable’s type

• the variable’s name (identifier)

• optionally, the initial value (initialization)

// declare a variable w of type int

int w;

// declare a variable x of type int, initialize x to 3

int x = 3;

• even if we do not initialize a variable when declaring it,
we have to initialize it before first accessing its value.

We can declare together multiple variables with the same type:

// declare variables y and z, both of type int, initialize z to 4

int y, z = 4;

8 / 41

Types

Java is a (strongly) typed language. This means that every variable
has a type associated with it.

A type constraints:

1. The (kinds of) values that a variable can take.

2. The operations that can be performed on variables of that type.

Example: a variable speed of type int:

1. speed can take any integer value between −231 =

Integer.MIN_VALUE and 231 − 1 = Integer.MAX_VALUE;
and cannot take any other value (for example, 240, 0.33, 1/7,

√
2,

"hello!" are all forbidden values for a variable of type int).

2. we can perform arithmetic operations (+, -, *, /, %, . . .),
assignments, and comparisons with variables of other
compatible numeric types.

9 / 41

Primitive types in Java

All Java types are partitioned into primitive and reference types.

Primitive types:

• 4 integer types of different size (byte, short, int, long)

• 2 floating point types of different size (float, double)

• 1 character type (char)

• 1 Boolean type (boolean)

About primitive types:

• Primitive types have names in lowercase letters

• We cannot define new primitive types: these 8 are all the
primitive types that are available in Java

• In the first part of the course, we have mainly used primitive types

10 / 41

Reference types in Java

Reference types:

• 8 wrapper types (Byte, Short, Integer, Long, Float, Double,
Character, Boolean), each corresponding to a primitive type with
the same (or similar) name

• the String type, representing strings of characters
• the Array type, representing sequences of values of

homogeneous type, accessible by index
• many other types in the Java standard libraries

About reference types:

• Reference types have names that start with an uppercase letter
• Each reference type corresponds to a class with the same name
• We can define new reference types: this is what object-oriented

programming is about!
• In the second part of the course, we will learn many new things

about reference types and use them extensively
11 / 41

Initialization of reference types

We use the new keyword to initialize variables of reference type.

Integer speed = new Integer(0); // Initialize speed to 0

The expression new Integer(0) invokes the constructor of class
Integer, which creates a new object of type Integer, initializes its
stored value to 0, and attaches the reference variable speed to the
object. After the initialization:

speed points to an object of type Integer

Integer speed

0

object of class Integer

We can initialize variables of a few “special” reference types (wrapper
types, Array, String) without using new: see later for examples.

12 / 41

Type conversions

It is often necessary to combine values of different types.
In particular, for numeric types:

• Widening conversions: implicit, with no precision loss:
from a smaller to a larger memory space

• byte −→ short −→ int −→ long

• float −→ double

• char −→ int −→ double

• Narrowing conversions: explicit with a cast, with possible
precision loss:

• other combinations of numeric types
• for example long to int

• Other conversions: implicit, with possible precision loss:
conversion to floating point encoding, with varying precision

• int −→ float

• long −→ float

• long −→ double

13 / 41

Type conversions: Examples

Widening conversions are implicit: we can use a value of the
“smaller” type wherever a value of the “larger” type is needed.

• no precision loss example: int −→ long

long companyValue = 651_500_000_000L; // USD 651.5 billion

int companyTaxes = 7_682_000_000; // USD 7.682 billion

// companyTaxes implicitly converted to long:

long valueAfterTaxes = companyValue - companyTaxes;

Narrowing conversions are explicit: when we use a value of the
“larger” type where a “smaller” type is needed we need a cast.

• precision loss example: double −→ int

double width = 10.8; int height = 11;

// casting double to int, with precision loss:

// 10.8 gets truncated to 10

int area = height * (int) width;

// area is 110
14 / 41

Type conversions: Boxing

Boxing is the implicit conversion of a value of a primitive type to the
corresponding wrapper reference type.

Integer balance = new Integer(0);

int interest = 120;

balance = balance + interest; // boxing int to Integer

The rules of implicit type conversions for primitive types apply to the
corresponding wrapper types.

Long companyValue = new Long(651_500_000_000L);

Integer companyTaxes = new Integer(2_140_000_000);

// companyTaxes implicitly converted to Long:

Long valueAfterTaxes = companyValue - companyTaxes;

Initialization with boxing for wrapper types:

Integer balance = 100; // boxing to Integer object with value 100

15 / 41

Type conversions: Unboxing

Unboxing is the implicit conversion of a wrapper reference type to a
value of the corresponding primitive type.

Integer balance = new Integer(0);

int balance_2 = balance; // unboxing Integer to int

16 / 41

Expressions

An expression is obtained by combining variables and method calls
with operators; it evaluates to a single value.

• Expressions must appear as part of statements – for example
assignment statements
// expression without statement: error!

speed;

// expression as part of an assignment statement: OK

new_speed = speed; expression

• The simplest kinds of expressions are constants and variable
references
speed = 3; // constant expression with value 3

new_speed = speed; // expression ‘speed’

• Expressions, like variables, have a type.
The usual type compatibility rules apply.

17 / 41

Expressions

We build more complex expressions by combining simpler
expressions using operators.

• Arithmetic expressions – numeric types:

speed + 3

2 * time

velocity / time

time % 60 // reminder of integer division: time / 60

• Comparison expressions – Boolean type:

initialSpeed < finalSpeed

3 == time // equality

answer != 42 // non-equality

18 / 41

Expressions

We build more complex expressions by combining simpler
expressions using operators.

• Boolean expressions – Boolean type:

true && false // and (conjunction)

found || outOfBound // or (disjunction)

!(speed < 0) // not (negation/complement)

• Operator precedence and parentheses:

2 * (5 + 5) != 2 * 5 + 5 // value of the whole expression?

2 * 5 + 5 == 15 // value of the whole expression?

2 * (5 + 5) == 20 // value of the whole expression?

19 / 41

Equality comparison

The difference between primitive and reference types affects how the
equality operators behave.

• For primitive types, == denotes value equality:

int x, y;

x = 10;

y = 10;

x == y // evaluates to true

10

int x

10

int y

• For reference types, == denotes reference equality:

Integer xI, yI;

xI = new Integer(10);

yI = new Integer(10);

xI == yI // evaluates to false Integer xI

10

Integer yI

10

• Method equals represents value equality for reference types:

xI.equals(yI) // evaluates to true

20 / 41

Equality comparison

The behavior of reference equality is tricky for “special” reference
types (wrapper types and String) if initialized without using new.

• Boxing constants to wrapper types gives one shared object per
constant value.

Integer xI, yI;

xI = 10;

yI = 10;

xI == yI // evaluates to true: the objects are shared

Integer xI

10

Integer yI

• Constants of type String give one shared object per string value.

String s, t;

s = "hej!";

t = "hej!";

s == t // evaluates to true String s

"hej!"

String t

21 / 41

Strings

Strings are sequences of characters. String is the Java class for
strings, but strings have a “special” syntax:

• s.length() returns the length of a string s

• the empty string "" has length zero, and is different from an
uninitialized string variable

• operator + denotes string concatenation

• constant strings are shared objects; hence == is value equality
(like method equals) even if String is a reference type

String s, t; // declare strings ‘s’ and ‘t’

s = ""; // initialize ‘s’ to empty string

t = "he" + "j!"; // concatenation with +

s = "hej!"; // s == t evaluates to true

s = new String("hej!"); // s != t but s.equals(t)

22 / 41

Arrays

Arrays are data structures to store sequences of elements of the
same type. Array is the Java class implementing arrays, but arrays
have a “special” syntax: for an array variable a:

• a.length denotes a’s fixed length (number of elements)

• a’s elements are stored at integer indexes from 0 to a.length - 1

(inclusive)

• initialized arrays store a default value in their slots

int[] a; // declare array ‘a’ of int

a = new int[5]; // initialize ‘a’ to 5 elements

a[0] = 100; // store 100 in position 0

a[a.length - 1] = 8; // store 8 in last position

int[] b = new int[4]; // initialize ‘b’ to 4 elements

a[0] = b[0]; // b[0] is the default int value 0

int[] c = {1,1,1,1,2}; // initialize whole array at once

23 / 41

Default values

TYPE DEFAULT VALUE

value integer types (byte, short, int, long) 0

value floating point types (float, double) 0.0

value character type (char) \u 0000

value Boolean type (boolean) false

reference types null

Default values do not apply to local variables, but only to array
content and attributes (see later).

24 / 41

Statements

A statement is a complete instruction that can be executed.

• Declarations are the simplest kind of statement,
which only has an implicit effect when executed.

• Assignments change the value stored in variables:
speed = distance / time;

balance = 11_000;

• Method calls (also called “method invocations”):
int[] a = new int[100]; // 100-element int array

java.util.Arrays.fill(a, 42); // fill ‘a’ with the number 42

• Control flow statements determine the order in which statements
are executed: conditionals and loops:

if (velocity > 0)

speed = velocity;

else

speed = -1 * velocity;

for (int i = 0; i < a.length; a++)

total = total + a[i];

25 / 41

Assignments

Every assignment has the form:

variable = expression;

• variable (the target of the assignment) is a single variable name

• the type of expression must be compatible with the type of
variable

Executing an assignment:

1. evaluate expression to determine its value v

2. update variable’s value to v

26 / 41

Side effects

An expression has side effects if evaluating the expression may
change some variables’ values implicitly.

• Self-increment and self-decrement operators

int balance = 0, interest = 10;

balance = interest++; // 1. evaluate interest

// 2. assign its value to balance

// 3. increment interest

balance = --interest; // 1. decrement interest

// 2. evaluate interest

// 3. assign its value to balance

• Method calls in expressions may also have side-effects
(we will see examples later)

27 / 41

Blocks and scope

Blocks group together statements to create compound statements.

{ // outer block begins

int x = 0, y = 1;

{ // inner block begins

int z = 2;

y = z + 1; // OK: y declared in outer block

} // inner block ends

y = z + 3; // Error: z declared in inner block, not available here

} // outer block ends

• Blocks are marked by curly braces { ... }

• A block can appear wherever a single statement can go
• Blocks can be nested inside other blocks
• Variables declared inside a block are only visible within the block

(this includes other blocks nested inside the block)
• The visibility of a variable is also called scope

28 / 41

Conditionals: if-then-else

Conditionals determine which statements are executed according to
the value of an expression (the condition).

if-then-else
conditional:

if (amount < balance)

// then branch

balance = balance - amount;

else

// else branch

System.out.println("Cannot withdraw amount!");

• The condition is a Boolean expression

• Thus, the then and else branches are mutually exclusive:
exactly one of them executes

• The else branch is optional: it may be omitted

• The then and else branches can be single statements or a block
of statements

29 / 41

Conditionals: switch

Switch case
statement:

switch (balance) {

case 0:

System.out.println("You’re broke!");

// fall-through behavior without a break!

case 1_000_000:

System.out.println("You’re rich!");

break;

default: // if all other cases are false

System.out.println("You’re average!");

}

1. Go through the cases in order, until a case matches
2. If no case matches, go to the default (if it exists)
3. Execute from the matching point on until a break (if it exists)

• Every case must be a constant expression
• The variable of switch can only be of type byte, short, int, char,

their wrapped counterparts, String, or an enum type (see later).
30 / 41

Loops

Loops repeat (iterate) the execution of statements until a condition
(Boolean expression) becomes true.

While loop:

int sum = 0; i = 0;

while (i < a.length) {

sum = sum + a[i];

i++;

}

// sum of all values in array ‘a’

Do loop:

int sum = 0; i = 0;

do {

sum = sum + a[i];

i++;

} while (i < a.length);

// sum of all values in array ‘a’

// only works if ‘a’ is not empty

31 / 41

Loops

Loops repeat (iterate) the execution of statements until a condition
(Boolean expression) becomes true.

For loop:

int sum = 0;

for (int i = 0; i < a.length; i++) {

sum = sum + a[i];

}

// sum of all values in array ‘a’

For-each
loop:

int sum = 0;

for (int v : a) {

// v takes all values in array ‘a’,

// one per iteration

sum = sum + v;

}

// sum of all values in array ‘a’

The for-each loop, also called enhanced for, can only iterate over
arrays or collections (see later).

32 / 41

Classes

We only had a glimpse of classes during the first part. In the second
part, we will learn many more things about them.

class Interest { // in a file Interest.java

static double interestYear(int year) // method declaration

{ return (year - 2010) / 100.0; }

// entry point of program

public static void main(String[] args) {

double interest = 0;

int oldYear = 2016;

interest = interestYear(oldYear - 3); // method call

System.out.println("The interest for " + year

+ " is " + interest);

}

// . . .
33 / 41

Methods

Methods are one kind of class members. In the second part, we will
also learn more about method declaration and usage.

public static double interestYear(int year) // method signature

{ // method body: implementation/definition

return (year - 2010) / 100.0;

}

• public defines the method’s visibility

• static identifies a class method

• double is the return type

• int year is the argument (also called parameter) declaration

34 / 41

Arguments

A method signature declares the types of the return (output) and
(input) arguments:

double interestYear(int year)

• the return value has type double and is assigned by a return

• the input argument is available as a local variable named year

within the method’s body
• year is called formal argument

A method call must match the types and order of the arguments:

interest = interestYear(oldYear - 3)

• arguments are identified by their position (in this example, there
is only one argument)

• expression oldYear - 3 must have type compatible with int (see
signature)

• oldYear - 3 is called actual argument
35 / 41

How method calls work

double interestYear(int year) interest = interestYear(oldYear - 3)

Java method calls are by value/copy:

IN GENERAL IN THE EXAMPLE

each actual argument is evaluated evaluate oldYear - 3 to 2013

the corresponding formal argument is
initialized to the value

initialize year to 2013

the called method’s body is executed execute interestYear

when execution reaches a return e

statement, expression e is evaluated
evaluate e to 0.03

the value becomes the value of the
method call expression in the caller

interestYear(oldYear - 3)

evaluates to 0.03

execution continues in the caller variable interest is updated to
0.03

36 / 41

How method calls work

void dontSet(int v) {

v = 10;

}

void set(int[] a) {

a[0] = 10;

}

Java method calls are by value/copy:

• changes to the formal argument in the called method’s body do
not affect the actual argument in the caller

• however, the called method can still change the value of objects
attached to references (variables of reference types)

int x = 0;

dontSet(x);

// x is still 0

int[] z = {0, 0};

set(z);

// z[0] is 10

37 / 41

How method calls work: primitive type arguments

Java method calls are by value/copy: with arguments of primitive
type, the only way the called method (callee) can send information to
the caller is via return.

void dontSet(int v) {

v = 10;

}

int v

int x = 0;

dontSet(x);

// x is still 0

int x

38 / 41

How method calls work: primitive type arguments

Java method calls are by value/copy: with arguments of primitive
type, the only way the called method (callee) can send information to
the caller is via return.

void dontSet(int v) {

v = 10;

}

int v

int x = 0;⇐=
dontSet(x);

// x is still 0

0

int x

38 / 41

How method calls work: primitive type arguments

Java method calls are by value/copy: with arguments of primitive
type, the only way the called method (callee) can send information to
the caller is via return.

void dontSet(int v) {

v = 10;

}

0

int v

int x = 0;

dontSet(x);⇐=
// x is still 0

0

int x

38 / 41

How method calls work: primitive type arguments

Java method calls are by value/copy: with arguments of primitive
type, the only way the called method (callee) can send information to
the caller is via return.

void dontSet(int v) {

v = 10;⇐=
}

10

int v

int x = 0;

dontSet(x);⇐=
// x is still 0

0

int x

38 / 41

How method calls work: primitive type arguments

Java method calls are by value/copy: with arguments of primitive
type, the only way the called method (callee) can send information to
the caller is via return.

void dontSet(int v) {

v = 10;

}

10

int v

int x = 0;

dontSet(x);

// x is still 0⇐=

0

int x

38 / 41

How method calls work: reference type arguments

Java method calls are by value/copy: with arguments of reference
type, the called method (callee) can send information to the caller
also indirectly by modifying shared objects.

void set(int[] a) {

a[0] = 10;

}

int[] a

int[] z = {0, 0};

set(z);

// z[0] is 10

int[] z

Note that the arguments are handled as for primitive types, but with
reference types a reference is copied.

39 / 41

How method calls work: reference type arguments

Java method calls are by value/copy: with arguments of reference
type, the called method (callee) can send information to the caller
also indirectly by modifying shared objects.

void set(int[] a) {

a[0] = 10;

}

int[] a

int[] z = {0, 0};⇐=
set(z);

// z[0] is 10

int[] z

<0, 0>

Note that the arguments are handled as for primitive types, but with
reference types a reference is copied.

39 / 41

How method calls work: reference type arguments

Java method calls are by value/copy: with arguments of reference
type, the called method (callee) can send information to the caller
also indirectly by modifying shared objects.

void set(int[] a) {

a[0] = 10;

}

int[] a

int[] z = {0, 0};

set(z);⇐=
// z[0] is 10

int[] z

<0, 0>

Note that the arguments are handled as for primitive types, but with
reference types a reference is copied.

39 / 41

How method calls work: reference type arguments

Java method calls are by value/copy: with arguments of reference
type, the called method (callee) can send information to the caller
also indirectly by modifying shared objects.

void set(int[] a) {

a[0] = 10;⇐=
}

int[] a

int[] z = {0, 0};

set(z);⇐=
// z[0] is 10

int[] z

<10, 0>

Note that the arguments are handled as for primitive types, but with
reference types a reference is copied.

39 / 41

How method calls work: reference type arguments

Java method calls are by value/copy: with arguments of reference
type, the called method (callee) can send information to the caller
also indirectly by modifying shared objects.

void set(int[] a) {

a[0] = 10;

}

int[] a

int[] z = {0, 0};

set(z);

// z[0] is 10⇐=

int[] z

<10, 0>

Note that the arguments are handled as for primitive types, but with
reference types a reference is copied.

39 / 41

Exceptions

Exceptions are objects used to signal unusual (often erroneous)
conditions. Exception handling code specifies what the program
should do when exceptions occur.

int n; // What is the advantage of declaring ‘n’ outside try block?

Scanner sc = new Scanner(System.in);

try {

n = sc.nextInt(); // may throw exception

System.out.println("Found integer " + n);

} catch (InputMismatchException e) { // what to do when an exception

// of given type is thrown

System.out.println("Invalid integer as string!");

} finally { // what to do after try/catch is executed

// regardless of whether an exception was thrown

sc.close();

}

40 / 41

Exceptions: try with resources

The try with resources mechanism introduces an implicit finally
block. It is convenient when managing resources that must be
opened and closed.

int n;

try (Scanner sc = new Scanner(System.in)) {

n = sc.nextInt(); // may throw exception

System.out.println("Found integer " + n);

} catch (InputMismatchException e) { // what to do when an exception

// of given type is thrown

System.out.println("Invalid integer as string!");

} // sc.close() implicitly executed when

// execution reaches this point

41 / 41

