
Chalmers | Göteborgs Universitet 2009-12-15

David Sands, D&IT

Functional Programming DIT 141 / TDA 451

2009-12-15 14.00 – 18.00 M/maskin

David Sands, 031 772 1059, 0737 207 663

• There are five Questions (with 11+4+10+4+11 = 40 points); a total of at least 17
points guarantees a pass.

• Results: latest 17 January.

• Permitted materials:

– Dictionary

• Please read the following guidelines carefully:

– Read through all Questions before you start working on the answers

– Begin each Question on a new sheet

– Write clearly; unreadable = wrong!

– Full marks are given to solutions which are short, elegant, efficient, and correct.
Less marks are given to solutions which are unnecessarily complicated or unstruc-
tured

– For each part Question, if your solution consists of more than 3 lines of Haskell
code, include short comments to explain the intention.

– You can use any standard Haskell function in your solution — a list of some useful
functions is attached

– You are encouraged to use the solution to an earlier part of a Question to help
solve a later part — even if you did not succeed in solving the earlier part.

This space is intentionally left non-blank

1

Question 1. In this question we suppose there exits some function sales :: Int -> Int which
gives the weekly sales from a shop, where weeks are numbered in sequence 0, 1, 2,. . .

(a) (8 points) The function zeroWeeks is supposed to behave as follows: given a week
number n (assumed to be non negative) it returns the number of weeks in the
range 0,...,n for which the sales were zero.

Give four definitions of zeroWeeks:

i. using a list comprehension and the function length,

ii. using any of the standard Haskell functions, but not defining any new recursive
functions, not using foldr/foldl, and not using list comprehensions,

iii. by defining a suitable tail-recursive helper-function, and

iv. using foldr, the list [0..n], and no other recursive functions.

Solution

zeroWeeks1 n = length [() | i <- [0..n], sales i == 0]

zeroWeeks2 n = (length . filter (==0) . map sales) [0..n]

count n = if sales n == 0 then 1 else 0

zeroWeeks3 n = zW 0 n

where zW k n | n < 0 = k

zW k n | otherwise = zW (k + count n) (n-1)

zeroWeeks4 n = foldr zeroC 0 [0..n]

where zeroC week total = count n + total

(b) (3 points) Explain what the function maxWeeks below computes (not how it com-
putes).

maxWeeks n = mW n (sales n) []

where mW n max weeks | n < 0 = weeks

mW n max weeks | sales n > max = mW (n-1) (sales n) [n]

| sales n == max = mW (n-1) max (n:weeks)

| sales n < max = mW (n-1) max weeks

Define a function which computes the same result (for all n greater than or equal
to zero), but which does not use explicit recursion. Solution

-- Computes the list of week numbers which have the largest sales in the period

maxWeeks’ n = filter ((==m) . sales) weeks

where weeks = [0..n]

m = maximum (map sales weeks)

Question 2. (a) (2 points) Define a datatype (any helper types you might need) to represent a
Ticket. A Ticket any one of

• A train ticket from a city to a city, either first- or second-class

• A bus ticket from a city to a city

2

• A flight ticket from a city to a city, travelling either business class, super
economy, or economy.

Cities may be represented as strings. Solution

data Ticket = Train City City TClass | Bus City City | Flight City City FClass

type City = String

data TClass = First | Second

data FClass = Business | SuperEcon | Econ

(b) (2 points) For any ticket, the first City is called the start city and the second city
is called the destination. We represent a journey by a list of tickets

type Journey = [Ticket]

Journey is valid if for any consecutive tickets in the list, the destination city for
the first ticket is the same as the start city for the second ticket.

Define a function

valid :: [Ticket] -> Bool

which determines whether a journey is valid. You may assume the Journey is non
empty. Solution

valid [_] = True

valid xs = tail starts == init dests

where (starts,dests) = unzip $ map cities xs

cities (Train c d _) = (c,d)

cities (Bus c d) = (c,d)

cities (Flight c d _) = (c,d)

Question 3. A basic datatype for logical (boolean) expressions, Logic is given below:

data Logic = Const Bool | And Logic Logic | Not Logic | Var String

To compute the value of such an expression we need an environment which provides
values for each variable:

type Env = [(String,Bool)]

(a) (3 points) Define a function

eval :: Env -> Logic -> Maybe Bool

A Maybe Bool result is used here because a variable might not appear in the
environment. However, your eval function should implement left-to-right shortcut
(lazy) evaluation of And. For example, suppose that

p = And (Var "x") (Const False)

q = And (Const False) (Var "x")

Then eval [] p should give Nothing and eval [] q should give Just False.
Solution

eval t (Var s) = lookup s t

eval t (Const b) = Just b

eval t (Not p) = case (eval t p) of

Just b -> Just (not b)

Nothing -> Nothing

eval t (And p q) = case (eval t p) of

3

Just False -> Just False

Just True -> eval t q

Nothing -> Nothing

(b) (2 points) Sometimes programming with Maybe types gets messy, for example
when we require nested case expressions of the form

case ... of

Nothing -> Nothing

Just x -> case ... of

Nothing -> Nothing

Just y -> ...

This situation can sometimes be improved by programming in monadic style, since
Maybe is in fact an instance of Monad, as given by the following definition:

instance Monad Maybe where

return = Just

fail = Nothing

Nothing >>= f = Nothing

(Just x) >>= f = f x

Rewrite your definition of eval above to make use of do notation.

Solution

eval’ t (Var s) = lookup s t

eval’ t (Const b) = Just b

eval’ t (Not p) =

do b <- eval’ t p

return (not b)

eval’ t (And p q) =

do b <- eval’ t p

if b then eval’ t q else return False

(c) (5 points) A logical expression e is called a tautology if eval t e gives Just True

for any environment t which contains a value for each variable in e. Define a
function

taut :: Logic -> Bool

which computes whether a logic expression is a tautology. (Note that this question
has nothing to do with QuickCheck!).

Hint: it will be useful to be able to generate a list of all possible environments for
a given list of variable names.

Solution

vars :: Logic -> [String]

vars (Var s) = [s]

vars (And p q) = vars p ++ vars q

vars (Not p) = vars p

vars _ = []

allenvs :: [String] -> [Env]

allenvs [] = [[]]

allenvs (x:xs) = let es = allenvs xs in

4

map ((x,True):) es ++ map ((x,False):) es

taut l = and [b | Just b <- map (flip eval l) es]

where es = allenvs (vars l)

Question 4. (4 points) Define a QuickCheck generator for permutations of a given list

perm :: [a] -> Gen [a]

For example

Main> sample (perm [1,1,2,3])

[1,1,2,3]

[1,2,1,3]

[2,1,1,3]

[3,1,2,1]

[3,1,1,2]

[1,2,1,3]

For full marks your definition should have exactly the type given. Solution

perm’ :: Eq a => [a] -> Gen [a]

perm’ [] = return []

perm’ xs = do a <- elements xs

as <- perm’ (delete a xs)

return (a:as)

perm xs = do as <- perm’ [0..length xs - 1]

return (map (xs!!) as)

Hint: you may find that the QuickCheck function elements :: [a] -> Gen a is useful
here:

Main> sample (elements ["and", "a","happy","new","year"])

"happy"

"new"

"a"

"year"

"happy"

"and"

Question 5. A rose tree is a tree with data items at the nodes, and having zero or more branches.
This can be represented in haskell using the following type:

data Rose a = R a [Rose a]

(a) (1 points) Give a Haskell definition example :: Rose Int which represents the
tree

5

1

/|\

2 0 3

/|\ |

4 5 6 7

Solution

example = R 1 [left, mid, right]

where leaf n = R n []

left = R 2 [leaf 4, leaf 5, leaf 6]

mid = leaf 0

right = R 3 [leaf 7]

(b) (2 points) Define a function roseMap such that roseMap f is a function which
applies the function f to each node in the rose tree to obtain a new rose tree. You
should also give the most general type of the function. For example, roseMap (+2) example

would compute a rose tree representing

3

/|\

4 2 5

/|\ |

6 7 8 9

Solution

roseMap :: (a -> b) -> Rose a -> Rose b

roseMap f (R a xs) = R (f a) (map (roseMap f) xs)

(c) (2 points) Define a function level :: Int -> Rose a -> [a] such that level n r

computes the elements, form left to right, at the n’th level of the tree. So for ex-
ample, level 3 example == [4,5,6,7] and level 4 example == []. You may
assume that n is non negative. Solution

level 0 r = []

level 1 (R a _) = [a]

level n (R _ rs) = concatMap (level (n-1)) rs

(d) (2 points) A simple computer file system can be viewed as a directory which has a
name, and contains zero or more files, and zero or more directories (usually referred
to as “sub-directories”). Each file has a name and some contents. With the help
of the following definitions

type DirName = String

type FileName = String

type Contents = String

data File = File FileName Contents

define a type Dir for a Directory. Your definition should use the rose tree datatype,
and not introduce any new recursive types. Solution

type Dir = Rose (DirName,[File])

(e) (4 points) Define a function

find:: String -> Dir -> [String]

6

which searches for all the files within a directory which contain (in their Contents)
the given string. The result is a list of all the paths to the files. For example,
suppose that we have a directory “C” containing just two sub-directories called
“Programs” and “Documents”. In the “Programs” directory there is a file,

File "test.hs" "solution = x\n where x = x"

and in the “Documents” directory there is a file

File "lyric.txt" "He’s a real nowhere man, sitting in his nowhere land"

If c represents the directory called “C”, then find "where" c should produce

["/C/Programs/test.hs", "/C/Documents/lyric.txt"]

Solution

find s (R (dir,files) fs)

= map extendPath $ ["/" ++ f | File f c <- files, s ‘occursIn‘ c]

++ concatMap (find s) fs

where extendPath path = "/" ++ dir ++ path

occursIn s c = any (isPrefixOf s) (tails c)

-- Data.List.tails was not included in the supplied function list

-- tails [] = [[]]

-- tails (x:xs) = (x:xs): tails xs

7

