28/11/2011

Laziness:
Use and Control

An Expensive Function?

expensive:: Integer -> Integer
expensive n

| n<=1

| otherwise

1

expensive (n-1)

+ expensive (n-2)
choice :: Bool -> a -> a -> a

choice False x y
choice True x y

= X
=Yy

Main> choice False 17 (expensive 99999)

17
Without delay...

Laziness

* Haskell is a lazy language

— A particular function argument is only
evaluated when it is needed, and

—if itis needed then it is evaluated just once
(\x -> x + x) (9 + 12)

“apply” needs @ A computation model
the function called graph reduction
+
c (9 + 12) P

(+) needs
21 + 21 its
0 arguments
42

When is a Value "Needed”?

strange :: Bool -> Integer
strange False = 17
strange True = 17

An argument
is evaluated
when a
pattern match

Main> strange undefined
Program error: undefined

But also primitive
functions evaluate
their arguments

use undefined or error

to test if something is
evaluated

Lazy Programming Style
» Separate

— Where the computation of a value is defined
— Where the computation of a value happens

Modularity!

Backtracking

» E.g. the Suduko lab

» Write an expression which represents all
valid solutions to a problem and pick the
first one.

» Laziness ensures that we do not generate
more than we need

28/11/2011

At Most Once?

apa :: Integer -> Integer
apa x = (f x)*2 + fx +1

6”2 evaluated once but
Main> apa (6°2) f (36) is evaluated twice

bepa :: Integer -> Integer -> Integer
bepa xy = f 17 + x +y

Main> bepa 1 2 + bepa 3 4

R f17is
Quiz: How to

avoid
recomputation?

evaluated
twice

At Most Once!

apa :: Integer -> Integer
apa X = Vv*2 +v +1
where v = f x

bepa :: Integer -> Integer -> Integer
bepa xy = f17 + x + y

f17 :: Integer
f17 = f 17

The compiler might
also perform these
optimisations

ghc-O or
ghc —ffull-laziness

Infinite Lists

* Because of laziness, values in Haskell can
be infinite
* Do not compute them completely!
— Instead, only use parts of them
take n [3..]
xs ‘zip" [1..]

« Uses of infinite lists

Examples

Example: PrintTable

printTable :: [String] -> IO ()
printTable xs =
sequence_ [putStrLn (show i ++ ":" ++ X)
| (x,i) <- xs “zip® [1..]

1

lengths
adapt to
each other

lterate

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

Main> iterate (*2) 1
[1,2,4,8,16,32,64,128,256,512,1024, ...

Other Handy Functions

repeat :: a -> [a]
repeat x = x : repeat x

cycle :: [a] -> [a]
cycle xs = Xxs ++ cycle xs

Quiz: How to
define these
with iterate?

28/11/2011

Alternative Definitions

repeat :: a -> [a]
repeat x = iterate id x

cycle :: [a] -> [a]
cycle xs = concat (repeat xs)

Replicate

replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

Main> replicate 5 'a’
"aaaaa”

Problem: Grouping List Elements

group :: Int -> [a] -> [[a]]
group = ?

Main> group 3 "apabepacepa!”

["apa”,”bep”,”ace”, pa!”]

Problem: Grouping List Elements

group :: Int -> [a] -> [[a]l]
group n = takeWhile (not . null)
. map (take n)

. iterate (drop n)

. connects "stages”
--- like Unix pipe
symbol |

Problem: Prime Numbers

primes :: [Integer]
primes = ?

Main> take 4 primes
[2,3,5,7]

Problem: Prime Numbers

primes :: [Integer]
primes = sieve [2..]
where
sieve (x:xs)
=x : sieve [y | y <- xs, y "mod” x /=0]

Eratosthenes' sieve — cf.
Exercise in Week 4

28/11/2011

"gf’

2 Sieve

primes :: [Integer]
primes = sieve [2..]
where

sieve (x:xs) = x :
sieve [y | y <- xs,
y ‘mod” x /=0]

Infinite Datastructures

data Labyrinth

= Crossroad
{ what :: String
, left :: Labyrinth

, right :: Labyrinth
}

How to make an
interesting
labyrinth?

Infinite Datastructures

labyrinth :: Labyrinth
labyrinth = start

where
start = Crossroad "start” forest town
town = Crossroad "town” start forest
forest = Crossroad "forest” town exit
exit = Crossroad "exit” exit exit

What happens

when we print
this structure?

Lazy 10

Does not actually read in
the whole file

headFile f = do
c <- readFile f
let ¢' = unlines . take 5 . lines $ ¢
putStrLn c'
Need to print
causes just 5
lines to be read

Lazy IO

* Common pattern: take a function form
String to String, connect stdin to the input
and stdout to the output
interact :: (String -> String) -> I0()

f:: String ->
String
()

interact f :: 10

Lazy 10

import Network.HTTP.Base(urlEncode)

encodeLines = interact $
unlines . map urlEncode . lines

Main> encodelines
hello world
hello%2@world
2+3=5

2%2B3%3D5

28/11/2011

Other 10 Variants

String is a list of Char, each element is thus
allocated individually. 10 using String has
very poor performance

+ Data.ByteString provides an alternative
non-lazy array-like representation
ByteString

 Data.ByteString.Lazy provides a hybrid
version which works like a list of max
64KB chunks

Controlling Laziness

» Haskell includes some features
to reduce the amount of
laziness allowing us to decide
when something gets evaluated
Used for performance tuning,
particularly for controlling space
usage
* Not recommended that you
mess with this unless you have
to — hard to get right in general

Example

* Sum of a list of numbers

million :: Integer
million = 1000000

Main sum [1..million]
** Exception: Stack overflow **

Example
» sum of a list of numbers
- Not a problem of
sum’ :: [Integer] -> Integer lazy evaluation!
sum’ [] =@

All languages will

. ,
sum’ (X:XS) = X + sum Xs have problems

with this

** Exception: Stack overflow **

million = 1000000 :: Integer

Main sum’ [1..million]

Tail Recursion

* Important concept in non-lazy functional
programming for efficient recursion

« Also useful in Haskell for recursive
functions which compute a basic typed
result (Integer, Double, Int, ...)

results which cannot
be computed lazily
bit-by-bit

Tail Recursion

« A function is tail recursive if the recursive

call itself produces the result
Example last :: [a] -> a
last [x] X

last (x:xs) = last xs =
The recursive call
is the whole result

Tail recursion uses no stack space. Can be
compiled to an unconditional jump

28/11/2011

Tail Recursive Sum

sum::: [Integer] -> Integer
sum = s @ helper function
where s acc [] = acc
s acc (x:xs) = s (acc+x) xs

* Not typically used with lazy data (e.g. lists)
since it stops us producing any of the
result list until the last step of the recursion

The Tail Recursive Pattern: foldl

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f v [] = v
foldl f v (x:xs) = foldl f (f v x) xs

foldl f v (a : b 8 @ 8 o)
gives (..(v "f a) "f b) "f c) f .

sum = foldl (+) ©

foldrfz

images: Wikipedia

Problem solved?

» Lazy evaluation is too lazy!

[1..million]

s @ [1..million]

s (0+1) [2..million]

s (0+1+2) [3..million]

Not computed until needed.
i.e., at the millionth recursive
call!

Controlling lazyness: seq

» Haskell includes a primitive function
seq:: a ->b ->b
which forces it’s first argument to be evaluated
(typically before evaluating the second).

The prelude also defines a strict application

operation:
"strict” is used to
mean the opposite
($!) :: (a->b) ->a ->b of "lazy”

f $! x = x “seq” f x

28/11/2011

Strictness

» The compiler looks for arguments which
will eventually be needed and will insert
seq in appropriate places. E.g.

compile with
optimisation:
ghc -0

sum’:: [Integer] -> Integer
sum’ = s @

where s acc [] = acc

s acc (x:xs) = acc “seq” s (acc+x) xs

force acc to be

simplified on each
recursive call

Strict Tail Recursion: foldl’

import Data.List(foldl’)

foldl’ :: (a -> b -> a) -> a -> [b] -> a
foldl’ f v [] =vVv
foldl’ f v (x:xs) = let a = f v x in

a “seq foldl’ f a xs

Example

 Average of a list of numbers

average :: [Integer] -> Integer

average xs = sum’ xs ~div’
fromIntegral (length xs)

million :: Integer

million = 1000000

Main> average (replicate million 1)
** Exception: Stack overflow *¥

making sum and
length tail recursive
and strict does not
solve the problem

Space Leak

* This problem is often called a space leak
— sum forces us to build the whole of [1..million]
—lazyness (“at most once”) requires us to keep
the list in memory since it is going to be used
by length

— if we only computed sum then the garbage
collector would collect it as we go along.

Solution

* Make average use tail recursion by
computing sum and length at the same
time:

average xs = av @ O xs where
av sm len [] = sm “div® fromIntegral len
av sm len (x:xs) = sm ~seq
len “seq”
av (sm + x) (len + 1) xs

Gotcha: seq is still quite lazy!

seq forces evaluation of first argument, but
only as far as the outermost constructor

This is called “evaluation to weak head-normal
form (whnf)”. Examples of whnfs:

- undefined : undefined
- (undefined,undefined)

- Just undefined
> undefined:undefined “seq” 3
3

28/11/2011

Example: sumlength Lazyness and IO
The pair is already count:: String -> IO Int
sumlength = foldl’ f (0,0) “evaluated”, so the

count f = do contents <- readFile f
let n = read contents
writeFile f (show (n+1))
return n

where f (s,1) a = (s+a,1+1) seq has no effect

readFile not
computed until it is
needed

sumlength = foldl’ f (@,0)
- 3 3 -
CHEO 7 A €1 5 1:tsfs‘;i ? 1,(?;:’}222 1) Main> count "testfile”
q q 4 **% Exception "testfile”: openFile resource
busy (file is locked)

force the evaluation of
the components before
the pair is constructed

Lazyness and 10 Conclusion

count:: String -> IO Int « Laziness
count f = do contents <- readFile f " ”

et M = reedl e — Evaluate "at most once

n “seq’ writeFile f (show (n+1)) — programming style

return n .

* Do not have to use it
« Often lazy IO is “just the right thing” — But powerful tool!
« Need to control it sometimes « Can make programs more “modular
— Usually solve this by working at the level of * Performance issues tricky

file handles. See e.g. System.IO — evaluation can be controlled using e.g. tail

recursion and strictness. Best avoided unless

necessary
Next time: Controlling ar and pse
Evaluation for Parallelism P pseq
* In theory a compiler should be able to ghc -threaded uses a threaded runtime
automatically compile pure functional system. To make use of it we need to add
programs to use multiple cores some parallelism hints to the code

— purity = computations can be freely Control.Parallel provides
reordered without changing the result

p tice this is hard. W, dto qi pseq , par :: a ->b ->b
* In practice this is hard. We need to give . _ . .
hints as to which strategy to use pseq — seq but with a stronger promise of

T) left-to-right evaluation order
— but no synchronisation/deadlock issues need
to be considered! par — maybe evaluate left argument (to

whnf) possibly in parallel with its right arg.

