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Parallelization: risks and opportunities

Concurrent programming introduces:

+ the potential for parallel execution (faster, better resource usage)

− the risk of race conditions (incorrect, unpredictable computations)

The main challenge of concurrent programming is thus introducing
parallelism without affecting correctness.

My concurrent program will be so fast, there will be no
time to check the answer!

– Scott West, circa 2010
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General approaches to parallelization

In this class, we explore several general approaches to parallelizing
computations in multi-processor systems.

A task 〈F ,D〉 consists in computing the result
F (D) of applying function F to input data D.

A parallelization of 〈F ,D〉 is a collection 〈F1,D1〉, 〈F2,D2〉, . . . of tasks
such that F (D) is the composition of F1(D1),F2(D2), . . ..

We mainly cast the problems and solutions using Erlang’s
terminology and models — message-passing between processes —
since it is easier to prototype implementations of the solutions.

However, most of the concepts and techniques apply as well to
shared-memory models such as Java threads.
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Challenges to parallelization

A strategy to parallelize a task 〈F ,D〉 should be:

• correct: the overall result of the parallelization is F (D)

• efficient: the total resources (time and memory) used to compute
the parallelization are less than those necessary to compute
〈F ,D〉 sequentially

A number of factors challenge designing correct and efficient
parallelizations:

• sequential dependencies

• synchronization costs

• spawning costs

• error proneness and composability
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Sequential dependencies

Some steps in a task computation depend on the result of other
steps; this creates sequential dependencies where one task must
wait for another task to run. Sequential dependencies limit the
amount of parallelism that can be achieved.

For example, to compute the sum 1 + 2 + · · ·+ 8 we could split into:

a. computing 1 + 2, 3 + 4, 5 + 6, 7 + 8

b. computing (1 + 2) + (3 + 4) and (5 + 6) + (7 + 8)

c. computing ((1 + 2) + (3 + 4)) + ((5 + 6) + (7 + 8))

The computations in each group depend on the computations in the
previous group, and hence the corresponding tasks must execute
after the latter have completed.

The synchronization problems (producer-consumer, dining
philosophers, etc.) we have discussed in various classes capture
kinds of sequential dependencies that may occur when parallelizing.
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Dependency graph

Some steps in a task computation depends on the result of other
steps; this creates sequential dependencies where one task must
wait for another task to run.

We represent tasks as the nodes in a graph, with arrows connecting a
task to the ones it depends on. The graph must be acyclic for the
decomposition to be executable.
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Dependency graph

We represent tasks as the nodes in a graph, with arrows connecting a
task to the ones it depends on. The graph must be acyclic for the
decomposition to be executable.
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The time to compute a node is the maximum of the times to compute
its children, plus the time computing the node itself. Assuming all
operations take a similar time, the longest path from the root to a leaf
is proportional to the optimal running time with parallelization
(ignoring overheads and assuming all processes can run in parallel). 6 / 54



Synchronization costs

Synchronization is required to preserve correctness, but it also
introduces overheads that add to the overall cost of parallelization.

In shared-memory concurrency:

• synchronization is based on locking
• locking synchronizes data from cache to main memory, which

may involve a 100x overhead
• other costs associated with locking may include context switching

(wait/signal) and system calls (mutual exclusion primitives)

In message-passing concurrency:

• synchronization is based on messages
• exchanging small messages is efficient, but sending around

large data is quite expensive (still goes through main memory)
• other costs associated with message passing may include extra

acknowledgment messages and mailbox management (removing
unprocessed messages)
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Spawning costs

Creating a new process is generally expensive compared to
sequential function calls within the same process, since it involves:

• reserving memory

• registering the new process with runtime system

• setting up the process’s local memory (stack and mailbox)

Even if process creation is increasingly optimized, the cost of
spawning should be weighted against the speed up that can be
obtained by additional parallelism. In particular, when the processes
become way more than the available processors, there will be
diminishing returns in more spawning.
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Error proneness and composability

Synchronization is prone to errors such as data races, deadlocks,
and starvation. Message-based synchronization may improve the
situation, but it is far for being straightforward and problem free.

From the point of view of software construction, the lack of
composability is a challenge that prevents us from developing
parallelization strategies that are generally applicable.

class Account {

synchronized void

deposit(int amount)

{ balance += amount; }

synchronized void

withdraw(int amount)

{ balance -= amount; }

}

class TransferAccount

extends Account {

// transfer from ‘this’ to ‘other’

void transfer(int amount, Account other)

{ this.withdraw(amount);

other.deposit(amount); }

}
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Error proneness and composability

Consider an Account class with methods deposit and withdraw that
execute atomically. What happens if we combine the two methods to
implement a transfer operation?

class Account {

synchronized void

deposit(int amount)

{ balance += amount; }

synchronized void

withdraw(int amount)

{ balance -= amount; }

}

class TransferAccount

extends Account {

// transfer from ‘this’ to ‘other’

void transfer(int amount, Account other)

{ this.withdraw(amount);

other.deposit(amount); }

}

execute atomically

Method transfer does not execute atomically: other threads can
execute between the call to withdraw and the call to deposit, possibly
preventing the transfer from succeeding (for example, account other
may be closed; or the total amount would look lower than it really is!).
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Composability

class Account {

void // thread unsafe!

deposit(int amount)

{ balance += amount; }

void // thread unsafe!

withdraw(int amount)

{ balance -= amount; }

}

class TransferAccount

extends Account {

// transfer from ‘this’ to ‘other’

synchronized void

transfer(int amount, Account other)

{ this.withdraw(amount);

other.deposit(amount); }

}

None of the simple possible solutions is fully satisfactory:

• let clients of Account do the locking where needed — error
proneness, revealing implementation details, scalability

• recursive locking — risk of deadlock, performance overhead

Even if there is no locking with message passing, we still encounter
similar problems — synchronizing the effects of messaging two
independent processes.
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Parallel servers

A server’s event loop offers clear opportunities for parallelism:

• each request sent to the server is independent of the others
• instead of serving requests sequentially, a server spawns a new

process for every request
• a child processes computes, sends response to the client, and

terminates

loop(State, Operation) ->

receive

{request, From, Ref, Data} ->

From ! {reply, Ref,

Operation(Data)},

loop(new_state(State));

% other operations...

end.

ploop(State, Operation) ->

receive

{request, From, Ref, Data} ->

spawn(fun ()->

Result = Operation(Data),

From ! {reply, Ref, Result}

end),

loop(new_state(State));

% other operations...

end. 11 / 54



Parallel recursion

The structure of recursive functions lends itself to parallelization
according to the structure of recursion.

Recursion is easier to parallelize when it is expressed in a mostly
side-effect free language like sequential Erlang:

• spawn a process for every recursive call

• no side effects means no hidden dependencies — a process’s
results only depends on its explicit input

12 / 54



Parallel recursion: merge sort

merge_sort(List)

when length(List) =< 1 ->

List;

merge_sort(List) ->

Mid = length(List) div 2,

% split in two halves

{L, R} = lists:split(Mid, List),

% recursively sort each half

SL = merge_sort(L),

SR = merge_sort(R),

% merge sorted halves

merge(SL, SR).

pmerge_sort(List)

when length(List) =< 1 ->

List;

pmerge_sort(List) ->

Mid = length(List) div 2,

{L, R} = lists:split(Mid, List),

Pid = self(),

spawn(fun ()-> Pid !

{sl, pmerge_sort(L)} end),

spawn(fun ()-> Pid !

{sr, pmerge_sort(R)} end),

receive {sl, SL} -> sl end,

receive {sr, SR} -> sr end,

merge(SL, SR).cannot be computed inside closure
in spawn: must be the parent’s pid
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Fork/join parallelism

This recursive subdivision of a task that assigns new processes to
smaller tasks is called fork/join parallelism:

• forking: spawning child processes and assigning them smaller
tasks

• joining: waiting for the child processes to complete and
combining their results

fork

fork
done

done

done

join

join

start end

The order in which we wait at a join node for forked children does not
affect the total waiting time: if we wait for a slower process first, we
won’t wait for the others later.
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Fork/join parallelism in Java

Java package java.util.concurrent includes a library for fork/join
parallelism. To implement a method T m() using fork/join parallelism:

If m is a procedure (T is void):
• create a class that inherits

from RecursiveAction

• override void compute()

with m’s computation

If m is a function:

• create a class that inherits
from RecursiveTask<T>

• override T compute() with
m’s computation

RecursiveAction and RecursiveTask<T> provide methods:

• fork(): schedule for asynchronous parallel execution

• T join(): wait for termination, and return result if T != void

• T invoke(): arrange synchronous parallel execution (fork and
join), and return result if T != void

• invokeAll(Collection<T> tasks) invoke all tasks in collection
(fork all and join all), and return collection of results
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Parallel merge sort using fork/join

public class PMergeSort extends RecursiveAction {

private Integer[] data; // values to be sorted

private int low, high; // to be sorted: data[low..high)

@Override

protected void compute() {

if (low >= high - 1) return; // size <= 1: sorted already

int mid = low + (high - low)/2; // mid point

// left and right halves

PMergeSort left = new PMergeSort(data, low, mid);

PMergeSort right = new PMergeSort(data, mid, high);

left.fork(); // fork thread working on left

right.fork(); // fork thread working on right

left.join(); // wait for sorted left half

right.join(); // wait for sorted right half

merge(mid); // merge halves

}
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Parallel map

Function map’s recursive structure lends itself to parallelization.

% apply F to all

% elements of list

map(_, []) -> [];

map(F, [H|T]) ->

[F(H)|map(F,T)].

% wait for all Children

% and collect results in order

gather(Children, Ref) ->

[receive {Child, Ref, Res}

-> Res end

|| Child <- Children].

% parallel map

pmap(F, L) ->

Me = self(), % my pid

Ref = make_ref(),

% for every E in L:

Children = map(fun(E) ->

% spawn a process

spawn(fun() ->

% sending Me result of F(E)

Me ! {self(), Ref, F(E)}

end) end, L),

% collect and return results

gather(Children, Ref).

list comprehension ensures results are collected in order
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Parallel reduce

The parallel version of reduce (also called foldr) uses a halving
strategy similar to merge sort.

reduce(_, A, []) -> A;

reduce(F, A, [H|T]) ->

F(H, reduce(F, A, T)).

preduce(F, A, L) equals
reduce(F, A, L) if:

• F is associative (preduce
does not apply F

right-to-left)

• for every list element E:
F(E, A) = F(A, E) = E

(preduce reduces A in
every base case, not just
once)

preduce(_, A, []) -> A;

preduce(F, A, [E]) -> F(A, E);

preduce(F, A, List) ->

Mid = length(List) div 2,

{L, R} = lists:split(Mid, List),

Me = self(), % L ++ R =:= Listn

Lp = spawn(fun() -> % on left half

Me ! {self(), preduce(F, A, L)} end),

Rp = spawn(fun() -> % on right half

Me ! {self(), preduce(F, A, R)} end),

% combine results of left, right half

F(receive {Lp, Lr} -> Lr end,

receive {Rp, Rr} -> Rr end).
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MapReduce

MapReduce is a programming model based on parallel distributed
variants of the primitive operations map and reduce. MapReduce is a
somewhat more general model, since it may produce a list of values
from a list of key/value pairs, but the underlying ideas are the same.

MapReduce implementations typically work on very large,
highly-parallel, distributed databases or filesystems.

• The original MapReduce implementation was proprietary
developed at Google

• Apache Hadoop offers a widely-used open-source Java
implementation of MapReduce
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How many processes is lagom?

Parallelizing by following the recursive structure of a task is simple
and appealing. However, the potential performance gains should be
weighted against the overhead of creating and running many
processes.
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How many processes is lagom?

Parallelizing by following the recursive structure of a task is simple
and appealing. However, the potential performance gains should be
weighted against the overhead of creating and running many
processes.

There are still limits to
how many processes fit
in memory. Besides,
even if we have enough
memory, more
processes do not
improve performance if
their number greatly
exceeds the number of
available physical
processors.
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Workers and pools

Process pools are a technique to address the problem of using an
appropriate number of processes.

A pool creates a number of worker processes upon initialization. The
number of workers is chosen according to the actual resources that
are available to run them in parallel — a detail which pool users need
not know about.

• As long as more work is available, the pool deals a work
assignment to a worker that is available

• The pool collects the results of the workers’ computations

• When all work is completed, the pool terminates and returns the
overall result

This kind of pool is called a dealing pool because it actively deals
work to workers.
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Workers

Workers are servers that run as long as the pool that created them
does. A worker can be in one of two states:

• idle: waiting for work assignments from the pool
• busy: computing a work assignment

As soon as a worker completes a work assignments, it sends the
result to the pool and goes back to being idle.

% create worker for ‘Pool’ computing ‘Function’

init_worker(Pool, Function) ->

spawn(fun ()-> worker(Pool, Function) end).

worker(Pool, Function) ->

receive {Pool, Data} -> % assignment from pool

Result = Function(Data), % compute work

Pool ! {self(), Result}, % send result to pool

worker(Pool, Function) % back to idle

end. 22 / 54



Pool state

A pool keeps track of:

• the remaining work — not assigned yet

• the busy workers

• the idle workers

-record(pool, {work, busy, idle}).

The pool also stores:

• a split function, used to extract a single work item

• a join function, used to combine partial results

• the overall result of the computation that is underway

pool(Pool#pool, Split, Join, Result) -> todo.

state of record type pool
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Pool termination

The pool terminates and returns the result of the computation when
there are no pending work items, and all workers are busy (thus all
work has been done).

% work completed, no busy workers: return result

pool(#pool{work = [], busy = []},

_Split, _Join, Result) ->

Result;
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Dealing work

As long as there is some pending work and some idle workers, the
pool deals work to some of those idle workers.

% work pending, some idle workers: assign work

pool(Pool = #pool{work = Work = [_|_], % matches if Work not empty

busy = Busy,

idle = [Worker|Idle]},

Split, Join, Result) ->

{Chunk, Remaining} = Split(Work), % split pending work

Worker ! {self(), Chunk}, % send chunk to worker

pool(Pool#pool{work = Remaining,

busy = [Worker|Busy],

idle = Idle},

Split, Join, Result);

Using a function Split provides flexibility in splitting work into chunks.
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Collecting results

When there are no pending work items or all workers are busy, the
pool can only wait for workers to send back results.

% work completed or no idle workers: wait for results

pool(Pool = #pool{busy = Busy, idle = Idle},

Split, Join, Result) ->

% get result from worker

receive {Worker, PartialResult} -> ok end,

% join worker’s result and current result

NewResult = Join(PartialResult, Result),

pool(Pool#pool{busy = lists:delete(Worker, Busy),

idle = Idle ++ [Worker]},

Split, Join, NewResult).

Note that the condition “no pending work or all workers busy” is
implicit because this clause comes last in the definition of pool.
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Pool creation

Initializing a pool requires a function to be computed, a workload, split
and join functions, and a number of worker threads.

init_pool(Function, Work, Split, Join, Initial, N) ->

Pool = self(),

% spawn N workers for the same pool

Workers = [init_worker(Pool, Function) || _ <- lists:seq(1, N)],

[link(W) || W <- Workers], % link workers to pool

% initially all work is pending, all workers are idle

pool(#pool{work = Work, busy = [], idle = Workers},

Split, Join, Initial).

Function link ensures that the worker processes are terminated as
soon as the process running the pool does.
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Parallel map with workers

We can define a parallel version of map using a pool:

pmap(F, L, N) -> init_pool(F, % function to be mapped

L, % work: list to be mapped

fun ([H|T]) -> {H, T} end, % split: take first element

fun (R,Res) -> [R|Res] end, % join: cons with list

[], N).

In practice we would set N to an optimal number based on the
available resources, and just export a parallel variant of map.

Note that the order of the results may change from run to run. It is
possible to restore the original order by using a more complex join
function.
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Parallel reduce with workers

We can define a parallel version of reduce using a pool:

preduce(F, I, L, N) ->

init_pool(fun ({X,Y}) -> F(X,Y) end, % so that a chunk is a pair

L, % split: take first two elements

fun (W) -> chunk_two(I, W) end,

F, % join: folding function!

I, N).

This works correctly under the same conditions as the direct
recursive version of preduce shown before: F should be associative,
and I should be a neutral element under F.

The syntax is a bit cumbersome, but the basic idea is that preduce
assigns to each worker the reduction of two consecutive input
elements.
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Joining is working too

In our version of preduce using a dealing pool, a lot of reduction work
is actually done by the pool process when executing join for each
result. In the dependency graph, the bottom level is computed by the
workers; the upper levels are computed by the pool while joining.

F

F

F

v1 v2

F

v3 v4

F

F

v5 v6

F

v7 v8
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Recursive dealing pools

More generally, the dealing process pool we have designed works
well if joining is a lightweight operation compared to computing the
work function.

A more flexible solution subdivides work in tasks. Each task consists
of a function to be applied to a list of data.

-record(task, {function, data}).

• The split function extracts a smaller task from a bigger one
• The join function creates a task consisting of computing the join

With this approach, the pool can delegate joining to the workers or do
it directly if it is little work. By creating suitable join and split functions
we can make a better usage of workers and achieve a better
parallelization.

We call this kind of pool recursive (dealing) pool, because it may
recursively generate new work while combining intermediate results.

31 / 54



From dealing to stealing

Dealing pools work well if:

• the workload can be split it even chunks, and

• the workload does not change over time (for example if users
send new tasks or cancel tasks dynamically)

Under these conditions, the workload is balanced evenly between
workers, so as to maximize the amount of parallel computation.

In realistic applications, however, these conditions are not met:

• it may be hard to predict reliably which tasks take more time to
compute

• the workload is highly dynamic

Stealing pools use a different approach to allocating tasks to workers
that better addresses these challenging conditions.
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Work stealing

A stealing pool associates a queue to every worker process. The pool
offloads new tasks by adding them a worker’s queue.

When a worker becomes idle:

• first, it gets the next task from the its queue

• if its queue is empty, it can directly steal tasks from the queue of
another worker that is currently busy

With this approach, workers adjust dynamically to the current working
conditions without requiring a supervisor that can reliably predict the
workload required by each task.
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Work stealing algorithm

This is an outline of the algorithm for work stealing. It assumes that
the queue array queue can be accessed by concurrent threads without
race conditions.
public class WorkStealingThread

{ Queue [] queue; // queues of all worker threads

public void run() {

{ int me = ThreadID.get(); // my thread id

while (true) {

for (Task task: queue[me]) // run all tasks in my queue

task.run();

// now my queue is empty: select another random thread

int victim = random.nextInt(queue.length);

// try to take a task out of the victim’s queue

Task stolen = queue[victim].pop();

// if the victim’s queue was not empty, run the stolen task

if (stolen != null) stolen.run();

} } }
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Thread pools in Java

Java offers efficient implementations of thread pools in package
java.util.concurrent.

The interface ExecutorService provides:

• void execute(Runnable thread): schedule thread for execution

• Future submit(Runnable thread): schedule thread for execution,
and return a Future object (to cancel the execution, or wait for
termination)

Implementations of ExecutorService with different characteristics can
also be obtained by factory methods of class Executors:

• CachedThreadPool: thread pool of dynamically variable size

• WorkStealingPool: thread pool using work stealing

• ForkJoinPool: work-stealing pool for running fork/join tasks
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Thread pools in Java: example

Without thread pools:

Counter counter = new Counter();

// threads t and u

Thread t = new Thread(counter);

Thread u = new Thread(counter);

t.start(); // increment once

u.start(); // increment twice

try { // wait for termination

t.join(); u.join(); }

catch (InterruptedException e)

{ System.out.println("Int!"); }

With thread pools:

Counter counter = new Counter();

// threads t and u

Thread t = new Thread(counter);

Thread u = new Thread(counter);

ExecutorService pool =

Executors.newWorkStealingPool();

// schedule t and u for execution

Future<?> ft = pool.submit(t);

Future<?> fu = pool.submit(u);

try { // wait for termination

ft.get(); fu.get(); }

catch (InterruptedException

| ExecutionException e)

{ System.out.println("Int!"); }
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Process pools in Erlang

Erlang provides some load distribution services in the system module
pool. These are aimed at distributing the load between different
nodes, each a full-fledged collection of processes.

In Lab 4 – Workers, you will implement a simple dealing worker pool
following the ideas we have presented in this class.
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The trouble with locks

Standard techniques for concurrent programming are ultimately
based on locks. Programming with locks has several drawbacks:

• performance overheads

• lock granularity is hard to choose:
• not enough locking: race conditions
• too much locking: not enough parallelism

• risk of deadlock and starvation

• lock-based implementations do not compose

• lock-based programs are hard to maintain and modify

Message-passing programming is somewhat higher-level, but it still
incurs some of the synchronization costs and lack of composability
associated with locks.
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Breaking free of locks

Lock-free programming takes a fresh look at the problems of
concurrency and tries to dispense with using locks altogether:

• lock-based programming is pessimistic: be prepared for the
worst possible conditions:

if things can go wrong, they will

• lock-free programming is optimistic: do what you have to do
without worrying about race conditions

if things go wrong, just try again
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Lock-free programming

Lock-free programming relies on:

• using stronger primitives for atomic access
• building optimistic algorithms using those primitives

Compare-and-set operations are an example of stronger primitives:

public class AtomicInteger {

// atomically set to ‘update’ if current value is ‘expect’

// otherwise do not change value and return false

boolean compareAndSet(int expect, int update)

}

To update an AtomicInteger variable k:

do { // keep trying until no one changes k in between

int oldValue = k.get();

int newValue = compute(oldValue);

} while (!k.compareAndSet(oldValue, newValue));
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Lock-free vs. wait-free

Two classes of lock-free algorithms, collectively called non-blocking:

lock-free: guarantee system-wide progress: infinitely often, some
process makes progress

wait-free: guarantee per-process progress: every process
eventually makes progress

Wait-free is stronger than lock-free:

• Lock-free algorithms are free from deadlock

• Wait-free algorithms are free from deadlock and starvation

Lock-free and wait-free algorithms have been developed for a number
of problems — in particular, non-blocking data structures atomically
accessible in parallel (thread safe), such as those in
java.util.concurrent.

41 / 54



Transactions

The notion of transaction, which comes from database research,
supports a general approach to lock-free programming:

A transaction is a sequence of steps executed by a single thread,
which are executed atomically.

A transaction may:

• succeed: all changes made by the transaction are committed to
shared memory; they appear as if they happened
instantaneously

• fail: the partial changes are rolled back, and the shared memory
is in the same state it would be if the transaction had never
executed

Therefore, a transaction either executes completely and successfully,
or it does not have any effect at all.
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Programming with transactions

The notion of transaction supports a general approach to lock-free
programming:

• define a transaction for every access to shared memory

• if the transaction succeeds, there was no interference

• if the transaction failed, retry until it succeeds

Imagine we have a syntactic means of defining transaction code:

atomic {

// transaction code

}

// retry until success

% execute Function(Arguments)

% as a transaction (retry until success)

atomic(Function, Arguments)

Transactions may also support invoking retry and rollback explicitly.

(Note that atomic is not a valid keyword in Java or Erlang: we use it
for illustration purposes, and later we sketch how it could be
implemented as a function in Erlang.)
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Transactions are better than locks

Transactional atomic blocks look superficially similar to monitor’s
methods with implicit locking, but they are in fact much more flexible:

• since transactions do not lock, there is no locking overhead
• parallelism is achieved without risks of race conditions
• since no locks are acquired, there is no problem of deadlocks

(although starvation may still occur if there is a lot of contention)
• transactions compose easily

class Account {

void deposit(int amount)

{ atomic {

balance += amount; }}

void withdraw(int amount)

{ atomic {

balance -= amount; }}

}

class TransferAccount extends Account {

// transfer from ‘this’ to ‘other’

void transfer(int amount,

Account other)

{ atomic {

this.withdraw(amount);

other.deposit(amount); }}

}
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Transactional memory

A transactional memory is a shared memory storage that supports
atomic updates of multiple memory locations.

Implementations of transactional memory can be based on hardware
or software:

• hardware transactional memory relies on support at the level of
instruction sets (Herlihy & Moss, 1993)

• software transactional memory is implemented as a library or
language extension (Shavit & Touitou, 1995)

Software transactional memory implementations are available for
several mainstream languages (including Java, Haskell, and Erlang).
This is still an active research topic — quality varies!
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Implementing software transactional memory

We outline an implementation of software transactional memory
(STM) in Erlang.

Each variable in an STM is identified by a name, value, and version:

-record(var, {name, version = 0, value = undefined}).
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Implementing software transactional memory

We outline an implementation of software transactional memory
(STM) in Erlang.

Each variable in an STM is identified by a name, value, and version:

-record(var, {name, version = 0, value = undefined}).

Clients use an STM as follows:

• at the beginning of a transaction, check out a copy of all
variables involved in the transaction

• execute the transaction, which modifies the values of the local
copies of the variables

• at the end of a transaction, try to commit all local copies of the
variables
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Implementing software transactional memory

We outline an implementation of software transactional memory
(STM) in Erlang.

Each variable in an STM is identified by a name, value, and version:

-record(var, {name, version = 0, value = undefined}).

The STM’s commit operation ensures atomicity:

• if all committed variables have the same version number as the
corresponding variables in the STM, there were no changes to
the memory during the transaction: the transaction succeeds

• if some committed variable has a different version number from
the corresponding variable in the STM, there was some change
to the memory during the transaction: the transaction fails
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The counter example — with software transactional memory

int cnt;

thread t thread u

int c; int c;

atomic {

c = cnt;

cnt = c + 1;

}

atomic {

c = cnt;

cnt = c + 1;

}

The atomic translates into a loop that repeats until the transaction
succeeds:

1. check out (pull) the current value of cnt

2. increment the local variable c

3. try to commit (push) the new value of cnt

4. if cnt has changed version when trying to commit, repeat the loop
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The counter example: a successful run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

// commit cnt

• •

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

ct : ⊥ cu : ⊥ cnt : 03
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The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;
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The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {
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The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);
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} while (!push(cnt, c));
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The subscript in a variable’s value indicates its version:
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The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));
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•

The subscript in a variable’s value indicates its version:
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The counter example: a retry run

〈name: cnt, version:x , value:y〉

thread t thread u

int c; int c;

do {

// check out cnt

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));
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STM in Erlang

An STM is a server that provides the following main operations:

• pull(Name): check out a copy of variable with name Name

• push(Name, Vars): commit all variables in Vars; return fail if
unsuccessful

Clients read and write local copies of variables using:

• read(Var): get value of variable Var

• write(Var, Value): set value of variable Var to Value

We base the STM implementation on the gserver generic server
implementation we presented in a previous class.
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STM: operations

create(Tm, Name, Value) ->

gserver:request(Tm, {create, Name, Value}).

drop(Tm, Name) ->

gserver:request(Tm, {drop, Name}).

pull(Tm, Name) ->

gserver:request(Tm, {pull, Name}).

push(Tm, Vars) when is_list(Vars) ->

gserver:request(Tm, {push, Vars});

read(#var{value = Value}) ->

Value.

write(Var = #var{}, Value) ->

Var#var{value = Value}.
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STM: server handlers

The storage is a dictionary associating variable names to variables; it
is the essential part of the server state.

stm(Storage, {pull, Name}) ->

case dict:is_key(Name, Storage) of

true ->

{reply, Storage,

dict:fetch(Name, Storage)};

false ->

{reply, Storage, not_found}

end;

stm(Storage, {push, Vars}) ->

case try_push(Vars, Storage) of

{success, NewStorage} ->

{reply, NewStorage, success};

fail ->

{reply, Storage, fail}

end.

51 / 54



STM: try to push

Helper function try_push determines if any variable to be committed
has a different version from the corresponding one in the STM.

try_push([], Storage) ->

{success, Storage};

try_push([Var = #var{name = Name, version = Version} | Vars],

Storage) ->

case dict:find(Name, Storage) of

{ok, #var{version = Version}} ->

try_push(Vars,

dict:store(Name,

Var#var{version = Version + 1},

Storage));

_ -> fail

end.
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Using the Erlang STM

Using the STM to create atomic functions is quite straightforward. For
example, here are pop and push atomic operations for a list:

% pop head element from ‘Name’

qpop(Tm, Name) ->

Queue = pull(Tm, Name),

[H|T] = read(Queue),

NewQueue = write(Queue, T),

case push(Tm, NewQueue) of

% push failed: retry!

fail -> qpop(Tm, Name);

% push successful: return head

_ -> H

end.

% push ‘Value’ to back of ‘Name’

qpush(Tm, Name, Value) ->

Queue = pull(Tm, Name),

Vals = read(Queue),

NewQueue = write(Queue,

Vals ++ [Value]),

case push(Tm, NewQueue) of

% push failed: retry!

fail -> qpush(Tm, Name, Value);

% push successful: return ok

_ -> ok

end.
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Composable transactions?

The simple implementation of STM we have outlined does not
support easily composing transactions:

% pop from Queue1 and push to Queue2

qtransfer(Tm, Queue1, Queue2) ->

Value = qpop(Tm, Queue1), % another process may interleave!

qpush(Tm, Queue2, Value).

To implement composability, we need to keep track of pending
transactions and defer commits until all nested transactions have
completed.

See the course’s website for an example implementation:

% atomically execute Function on arguments Args

atomic(Tm, Function, Args) -> todo.
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