
Synchronization problems with monitors

Lecture 6 of TDA383/DIT390 (Concurrent Programming)

Carlo A. Furia

Chalmers University of Technology – University of Gothenburg
SP3 2016/2017

Today’s menu

Resource allocator

Barriers

Readers-writers

Dining philosophers

Sleeping barber

1 / 38

A gallery of synchronization problems

In today’s class, we go through several classical synchronization
problems and solve them using threads and monitors.

We will mostly use pseudo-code representing monitor classes with
signal and continue discipline, which simplifies the details of Java
syntax and libraries but which can be turned into fully functioning
code by adding boilerplate. On the course website you can download
fully working implementations of some of the problems.

2 / 38

Monitors in pseudo-code

We declare monitor classes by adding the pseudo-code keyword
monitor to regular Java classes. Note that monitor is not a valid Java
keyword—that is why we highlight it in a different color—but we will
use it to simplify the presentation of monitors.

Turning a pseudo-code monitor class into a proper Java class is
straightforward:

• mark all attributes as private

• add locking to all public methods

Details on how to implement monitors in Java are presented in the
class on monitors.

We also occasionally annotate monitor classes with invariants using
the pseudo-code keyword invariant; invariant is not a valid Java
keyword—that is why we highlight it in a different color—but we will
use it to help make more explicit the behavior of classes.

3 / 38

Resource allocator

Resource allocator: the problem

An allocator grants users exclusive access to a number of resources:

• users asynchronously request resources and release them back
• the allocator ensures resources are given exclusively to one user

at a time, and keeps tracks of how many resources are available

interface Allocator<T> {

// get ‘n’ resources; block if not available

Set<T> request(int n);

// release ‘resources’

void release(Set<T> resources);

}

Resource allocator problem: implement Allocator such that:

• an arbitrary number of users can access the allocator

• users are granted exclusive access to resources
4 / 38

Users

Users continuously and asynchronously access the allocator, which
must guarantee proper synchronization.

Allocator<Resource> allocator;

userk

while (true) {

// how many resources are needed?

int n = howMany();

// get resources from allocator

Set<Resource> res = allocator.request(n);

// do something with resources

for (Resource r: res) use(r);

// release resources

allocator.release(res); // we assume |res| does not change

}

5 / 38

Allocator: request resources

The allocator problem is similar to the producer-consumer: users
waiting for resources block, and get unblocked when some other
users releases them. The important thing is to only acquire all
resources at once when they are all available.

monitor class MonitorAllocator<T> implements Allocator<T> {

int available; // number of available resources

// new resources have become available

Condition moreAvailable = new Condition();

Set<T> storage = new Set<>(); // actual resources

public Set<T> request(int n) {

while (available < n)

moreAvailable.wait();

// now n resources are available

available -= n; // update count

return storage.removeAll(n); // remove and return n resources

}

do not update available until done waiting!

6 / 38

Allocator: release resources

When releasing resources, we do not know how many resources
each waiting thread is waiting for. Therefore, we have to signal all
waiting users; each will have a chance to check whether enough
resources are available.

monitor class MonitorAllocator<T> implements Allocator<T> {

int available; // number of available resources

// new resources have become available

Condition moreAvailable = new Condition();

Set<T> storage = new Set<>(); // actual resources

public void release(Set<T> resources) {

int n = resources.count(); // how many resources?

storage.addAll(resources); // add resources to storage

available += n; // update count

moreAvailable.signalAll(); // more resources are available

}

must signal all waiting threads

7 / 38

Allocator: targeted signaling

MonitorAllocator may be somewhat inefficient: if there are many
users and few resources in the system, every time there is a release

all threads are unblocked and resumed, but most of them will have to
go back waiting. In these conditions, it may be better to use multiple
condition variables to signal precisely how many resources have
become available.

monitor class TargetedAllocator<T> extends MonitorAllocator<T> {

Condition[] have = new Condition[N]; // N = total # of resources

public Set<T> request(int n) {

// wait for n resources

while (available < n)

have[n - 1].wait();

available -= n;

return storage.removeAll(n);

}

public void release(Set<T> resources) {

int n = resources.count();

storage.addAll(resources);

available += n;

for (int k = available; 0 < k; k--)

have[k - 1].signal();

}

arrays indexed from 0
signal threads waiting for 1 ≤ k ≤ available resources

8 / 38

Allocator: targeted signaling

MonitorAllocator may be somewhat inefficient: if there are many
users and few resources in the system, every time there is a release

all threads are unblocked and resumed, but most of them will have to
go back waiting. In these conditions, it may be better to use multiple
condition variables to signal precisely how many resources have
become available.

monitor class TargetedAllocator<T> extends MonitorAllocator<T> {

Condition[] have = new Condition[N]; // N = total # of resources

public Set<T> request(int n) {

// wait for n resources

while (available < n)

have[n - 1].wait();

available -= n;

return storage.removeAll(n);

}

public void release(Set<T> resources) {

int n = resources.count();

storage.addAll(resources);

available += n;

for (int k = available; 0 < k; k--)

have[k - 1].signal();

}arrays indexed from 0
signal threads waiting for 1 ≤ k ≤ available resources 8 / 38

Allocator: targeted signaling — fairness analysis

Neither TargetedAllocator nor MonitorAllocator satisfy starvation
freedom: two users b1 and b2 can alternate getting the resources and
starve another user s.

For simplicity, suppose there is a single resource in the system.

b1active thread:

request() { /* ... */}

release() { /* ... */}

entry queue:

have.blocked:

s

executing

who has the resource: allocator

This is the same as the initial state, so this scenario can repeat
indefinitely.

9 / 38

Allocator: targeted signaling — fairness analysis

Neither TargetedAllocator nor MonitorAllocator satisfy starvation
freedom: two users b1 and b2 can alternate getting the resources and
starve another user s.

For simplicity, suppose there is a single resource in the system.

sactive thread:

request() { /* ... */}

release() { /* ... */}

entry queue:

have.blocked:

b1 b2

executing

who has the resource: b1

This is the same as the initial state, so this scenario can repeat
indefinitely.

9 / 38

Allocator: targeted signaling — fairness analysis

Neither TargetedAllocator nor MonitorAllocator satisfy starvation
freedom: two users b1 and b2 can alternate getting the resources and
starve another user s.

For simplicity, suppose there is a single resource in the system.

active thread:

request() { /* ... */}

release() { /* ... */}

entry queue:

have.blocked:

b1 b2

s

who has the resource: b1

This is the same as the initial state, so this scenario can repeat
indefinitely.

9 / 38

Allocator: targeted signaling — fairness analysis

Neither TargetedAllocator nor MonitorAllocator satisfy starvation
freedom: two users b1 and b2 can alternate getting the resources and
starve another user s.

For simplicity, suppose there is a single resource in the system.

b1active thread:

request() { /* ... */}

release() { /* ... */}

entry queue:

have.blocked:

b2

s

executing

who has the resource: b1

This is the same as the initial state, so this scenario can repeat
indefinitely.

9 / 38

Allocator: targeted signaling — fairness analysis

Neither TargetedAllocator nor MonitorAllocator satisfy starvation
freedom: two users b1 and b2 can alternate getting the resources and
starve another user s.

For simplicity, suppose there is a single resource in the system.

active thread:

request() { /* ... */}

release() { /* ... */}

entry queue:

have.blocked:

b2 s

who has the resource: allocator

This is the same as the initial state, so this scenario can repeat
indefinitely.

9 / 38

Allocator: targeted signaling — fairness analysis

Neither TargetedAllocator nor MonitorAllocator satisfy starvation
freedom: two users b1 and b2 can alternate getting the resources and
starve another user s.

For simplicity, suppose there is a single resource in the system.

b2active thread:

request() { /* ... */}

release() { /* ... */}

entry queue:

have.blocked:

s

executing

who has the resource: allocator

This is the same as the initial state, so this scenario can repeat
indefinitely.

9 / 38

Allocator: targeted signaling — fairness analysis

Neither TargetedAllocator nor MonitorAllocator satisfy starvation
freedom: two users b1 and b2 can alternate getting the resources and
starve another user s.

For simplicity, suppose there is a single resource in the system.

sactive thread:

request() { /* ... */}

release() { /* ... */}

entry queue:

have.blocked:

b2 b1

executing

who has the resource: b2

This is the same as the initial state, so this scenario can repeat
indefinitely.

9 / 38

Allocator: targeted signaling — fairness analysis

Neither TargetedAllocator nor MonitorAllocator satisfy starvation
freedom: two users b1 and b2 can alternate getting the resources and
starve another user s.

For simplicity, suppose there is a single resource in the system.

b2active thread:

request() { /* ... */}

release() { /* ... */}

entry queue:

have.blocked:

b1

s

executing

who has the resource: b2

This is the same as the initial state, so this scenario can repeat
indefinitely.

9 / 38

Allocator: targeted signaling — fairness analysis

Neither TargetedAllocator nor MonitorAllocator satisfy starvation
freedom: two users b1 and b2 can alternate getting the resources and
starve another user s.

For simplicity, suppose there is a single resource in the system.

active thread:

request() { /* ... */}

release() { /* ... */}

entry queue:

have.blocked:

b1 s

who has the resource: allocator

This is the same as the initial state, so this scenario can repeat
indefinitely.

9 / 38

Allocator: targeted signaling — fairness analysis

Neither TargetedAllocator nor MonitorAllocator satisfy starvation
freedom: two users b1 and b2 can alternate getting the resources and
starve another user s.

For simplicity, suppose there is a single resource in the system.

b1active thread:

request() { /* ... */}

release() { /* ... */}

entry queue:

have.blocked:

s

executing

who has the resource: allocator

This is the same as the initial state, so this scenario can repeat
indefinitely. 9 / 38

Fair allocator

Starvation occurs because new calls to request take over waiting
calls. To avoid starvation, we let new requests yield to waiting ones:
public Set<T> request(int n) {

// wait until n resources are available

// and there are no waiting users

while (available < n || ∃ k: !have[k].isEmpty())

have[n - 1].wait();

available -= n;

return storage.removeAll(n);

}

0 ≤ k < N

By waiting until all previous waiting requests have been served, we
have a first-come-first-served policy for assigning resources.

This is not directly implementable in Java because Condition does
not offer isEmpty, but one can emulate it by explicitly keeping track of
waiting processes. We will follow a similar approach for fairness in the
readers-writers problem with monitors.

10 / 38

Fair allocator

Starvation occurs because new calls to request take over waiting
calls. To avoid starvation, we let new requests yield to waiting ones:
public Set<T> request(int n) {

// wait until n resources are available

// and there are no waiting users

while (available < n || ∃ k: !have[k].isEmpty())

have[n - 1].wait();

available -= n;

return storage.removeAll(n);

}

0 ≤ k < N

By waiting until all previous waiting requests have been served, we
have a first-come-first-served policy for assigning resources.

This is not directly implementable in Java because Condition does
not offer isEmpty, but one can emulate it by explicitly keeping track of
waiting processes. We will follow a similar approach for fairness in the
readers-writers problem with monitors.

10 / 38

Barriers

Reusable barriers — recap

interface Barrier {

// block until expect() threads have reached barrier

void wait();

// number of threads expected at the barrier

int expect();

}

Reusable barrier: implement Barrier such that:

• a thread blocks on wait until all threads have reached the barrier

• after expect() threads have executed wait, the barrier is closed
again

11 / 38

Threads at a reusable barrier

Threads continuously approach the barrier, which must guarantee
that they synchronize each access.

Barrier barrier = new Barrier(n); // barrier for n threads

threadk

while (true) {

// code before barrier

barrier.wait(); // synchronize at barrier

// code after barrier

}

12 / 38

Barriers: first attempt

As a first attempt, we use a condition variable allDone to signal when
the last thread has arrived at the barrier.

monitor class NonBarrier1 implements Barrier {

final int n; // number of expected threads

int nDone = 0; // number of arrived threads

Condition allDone = new Condition(); // all threads arrived

public void wait()

{ nDone += 1;

if (nDone == n) allDone.signalAll(); // if last, signal all

else while (nDone < n) allDone.wait(); // else wait for allDone

nDone -= 1; }

}

• The while loop around allDone.wait() is needed because of the
signal and continue discipline (and possible spurious wakeups)

• Unfortunately, it also keeps on blocking all threads but the last
one, since they all read nDone == n - 1 < n when unblocked

13 / 38

Barriers: first attempt

As a first attempt, we use a condition variable allDone to signal when
the last thread has arrived at the barrier.

monitor class NonBarrier1 implements Barrier {

final int n; // number of expected threads

int nDone = 0; // number of arrived threads

Condition allDone = new Condition(); // all threads arrived

public void wait()

{ nDone += 1;

if (nDone == n) allDone.signalAll(); // if last, signal all

else while (nDone < n) allDone.wait(); // else wait for allDone

nDone -= 1; }

}
• The while loop around allDone.wait() is needed because of the

signal and continue discipline (and possible spurious wakeups)
• Unfortunately, it also keeps on blocking all threads but the last

one, since they all read nDone == n - 1 < n when unblocked 13 / 38

Barriers: second attempt

As a second attempt, we remove the decrement to nDone, so that all
waiting threads can continue.

monitor class DisposableBarrier implements Barrier {

final int n; // number of expected threads

int nDone = 0; // number of arrived threads

Condition allDone = new Condition(); // all threads arrived

public void wait()

{ nDone += 1;

if (nDone == n) allDone.signalAll(); // if last, signal all

else while (nDone < n) allDone.wait(); }// else wait for allDone

}

This works in the first iteration, but it is not reusable: after the last
thread signals allDone, the barrier remains open indefinitely.

14 / 38

Barriers: correct solution

A correct solution uses another variable round to keep track of how
many times the barrier has been used. The last thread in each round
resets nDone and increments round for the next iteration; other threads
only block as long as the current turn is not complete.
monitor class TurnBarrier implements Barrier {

int round = 0; /* other variables as in previous attempts */

public void wait()

{ nDone += 1;

int myRound = round; // what round am I in?

if (nDone == n) { // if last at barrier:

allDone.signalAll(); // signal all

nDone = 0; // reset counter

round += 1; // increase round

} else while (nDone < n // else wait for allDone

&& myRound == round) // while the turn

allDone.wait(); } // has not changed

}

to avoid overflows, count modulo 2: round = (round+1)%2

15 / 38

Barriers: correct solution

A correct solution uses another variable round to keep track of how
many times the barrier has been used. The last thread in each round
resets nDone and increments round for the next iteration; other threads
only block as long as the current turn is not complete.
monitor class TurnBarrier implements Barrier {

int round = 0; /* other variables as in previous attempts */

public void wait()

{ nDone += 1;

int myRound = round; // what round am I in?

if (nDone == n) { // if last at barrier:

allDone.signalAll(); // signal all

nDone = 0; // reset counter

round += 1; // increase round

} else while (nDone < n // else wait for allDone

&& myRound == round) // while the turn

allDone.wait(); } // has not changed

}

to avoid overflows, count modulo 2: round = (round+1)%2

15 / 38

Readers-writers

Readers-writers: the problem — a new variant

interface AccessBoard {

void beginRead(); // get read access to board

void endRead(); // release read access

void beginWrite(); // get write access to board

void endWrite(); // release write access

}

Readers-writers problem: implement AccessBoard such that:

• multiple reader can operate concurrently

• each writer has exclusive access

Invariant: #WRITERS = 0 ∨ (#WRITERS = 1 ∧#READERS = 0)

Other properties that a good solution should have:

• support an arbitrary number of readers and writers
• no starvation of readers or writers

16 / 38

Readers and writers

Readers and writers continuously and asynchronously try to access
the board, which must guarantee proper synchronization.

AccessBoard board;

readern writerm

while (true) {

board.beginRead();

// read messages

board.endRead();

}

while (true) {

board.beginWrite();

// write messages

board.endWrite();

}

17 / 38

Where is the reading and writing?

In the semaphore version of the readers-writers problem, we had
single methods read and write that guaranteed synchronization and
performed the actual reading and writing.

In contrast, the monitor version that we are describing now has
methods to synchronize the begin and end of reading and writing, but
the actual reading and writing is left implicit:

• the actual writing could be performed in a monitor method, since
it operates in mutual exclusion w.r.t. both readers and writers

• however, the actual reading should not be performed in a monitor
method, since it would prevent multiple readers from actually
operating concurrently

18 / 38

Where is the reading and writing?

In the semaphore version of the readers-writers problem, we had
single methods read and write that guaranteed synchronization and
performed the actual reading and writing.

In a concrete implementation, the actual reading and writing could
operate on a different (non-synchronized) shared object:

• readers and writers must follow the protocol of calling
beginRead/beginWrite before reading/writing the other shared
object, and calling endRead/endWrite when they are done
reading/writing it

• this way, synchronization is guaranteed for any shared object that
can be read and written, and the only actual concurrency is the
one permitted by the problem (multiple readers, and no writers)

18 / 38

Readers-writers: condition variables

Since we want to allow multiple readers on the board at the same
time, we cannot simply give the lock on the whole monitor to a single
thread. Instead, we use condition variables to notify threads when it is
OK to read or to write.

monitor class MonitorBoard implements ActiveBoard {

int nReaders = 0; // # readers active on the board

int nWriters = 0; // # writers active on the board

Condition readOK = new Condition(); // readers can access board

Condition writeOK = new Condition(); // a writer can access board

invariant { nWriters == 0 || (nWriters == 1 && nReaders == 0) }

19 / 38

Readers-writers: entry/exit methods

Entry methods beginRead and beginWrite:

• wait until it is OK to read/write

• increment the number of readers/writers

Exit methods endRead and endWrite:

• decrement the number of readers/writers

• signal waiting readers/writers

The tricky part is when to signal and when to wait: different choices
lead to different priorities of readers vs. writers.

20 / 38

Readers-writers: entry methods — first version

In the first version, the waiting conditions follow directly from the class
invariant: readers wait until there are no writers, and writers wait until
there are neither readers nor writers.

public void beginRead() {

// wait until:

// no active writers

while (nWriters > 0)

readOK.wait();

nReaders += 1;

// more readers welcome

readOK.signalAll();

}

public void beginWrite() {

// wait until:

// no active writers and

// no active readers

while (nWriters > 0

|| nReaders > 0)

writeOK.wait();

nWriters += 1; // nWriters == 1

}

The readOK.signalAll() at the end of beginRead is not needed: a
reader only waits when nWriters > 0, so as long as endWrite

unblocks all readers there will not be waiting readers there.

21 / 38

Readers-writers: entry methods — first version

In the first version, the waiting conditions follow directly from the class
invariant: readers wait until there are no writers, and writers wait until
there are neither readers nor writers.

public void beginRead() {

// wait until:

// no active writers

while (nWriters > 0)

readOK.wait();

nReaders += 1;

// more readers welcome

readOK.signalAll();

}

public void beginWrite() {

// wait until:

// no active writers and

// no active readers

while (nWriters > 0

|| nReaders > 0)

writeOK.wait();

nWriters += 1; // nWriters == 1

}

The readOK.signalAll() at the end of beginRead is not needed: a
reader only waits when nWriters > 0, so as long as endWrite

unblocks all readers there will not be waiting readers there.

21 / 38

Readers-writers: exit methods — first version

public void endRead() {

nReaders -= 1;

// if last reader: resume

// one waiting writer

if (nReaders == 0)

writeOK.signal();

// more readers welcome

readOK.signalAll();

}

public void endWrite() {

nWriters -= 1; // nWriters == 0

// resume one waiting writer

// and all waiting readers

readOK.signalAll();

writeOK.signal();

}

Similarly as in beginRead, the readOK.signalAll() at the end of
endRead is not needed: a reader only waits when nWriters > 0, so as
long as endWrite unblocks all readers there will not be waiting
readers there.

22 / 38

Readers-writers: exit methods — first version

public void endRead() {

nReaders -= 1;

// if last reader: resume

// one waiting writer

if (nReaders == 0)

writeOK.signal();

// more readers welcome

readOK.signalAll();

}

public void endWrite() {

nWriters -= 1; // nWriters == 0

// resume one waiting writer

// and all waiting readers

readOK.signalAll();

writeOK.signal();

}

Similarly as in beginRead, the readOK.signalAll() at the end of
endRead is not needed: a reader only waits when nWriters > 0, so as
long as endWrite unblocks all readers there will not be waiting
readers there.

22 / 38

Readers-writers: the first version prioritizes readers

The first version ensures mutual exclusion but gives priority to
readers over writers.

r1active thread:

beginRead() { /* ... */}

endRead() { /* ... */}

beginWrite() { /* ... */}

endWrite() { /* ... */}

entry queue:

writeOK.blocked:

1nReaders:

w r2

executing

Déjà vu!

23 / 38

Readers-writers: the first version prioritizes readers

The first version ensures mutual exclusion but gives priority to
readers over writers.

wactive thread:

beginRead() { /* ... */}

endRead() { /* ... */}

beginWrite() { /* ... */}

endWrite() { /* ... */}

entry queue:

writeOK.blocked:

1nReaders:

r2

executing

Déjà vu!

23 / 38

Readers-writers: the first version prioritizes readers

The first version ensures mutual exclusion but gives priority to
readers over writers.

r2active thread:

beginRead() { /* ... */}

endRead() { /* ... */}

beginWrite() { /* ... */}

endWrite() { /* ... */}

entry queue:

writeOK.blocked:

2nReaders:
executing

w

Déjà vu!

23 / 38

Readers-writers: the first version prioritizes readers

The first version ensures mutual exclusion but gives priority to
readers over writers.

r1active thread:

beginRead() { /* ... */}

endRead() { /* ... */}

beginWrite() { /* ... */}

endWrite() { /* ... */}

entry queue:

writeOK.blocked:

1nReaders:
executing

w

Déjà vu!

23 / 38

Readers-writers: the first version prioritizes readers

The first version ensures mutual exclusion but gives priority to
readers over writers.

r1active thread:

beginRead() { /* ... */}

endRead() { /* ... */}

beginWrite() { /* ... */}

endWrite() { /* ... */}

entry queue:

writeOK.blocked:

2nReaders:
executing

w

Déjà vu!

23 / 38

Readers-writers: the first version prioritizes readers

The first version ensures mutual exclusion but gives priority to
readers over writers.

r2active thread:

beginRead() { /* ... */}

endRead() { /* ... */}

beginWrite() { /* ... */}

endWrite() { /* ... */}

entry queue:

writeOK.blocked:

1nReaders:
executing

w

Déjà vu!

23 / 38

Readers-writers: the first version prioritizes readers

The first version ensures mutual exclusion but gives priority to
readers over writers.

r2active thread:

beginRead() { /* ... */}

endRead() { /* ... */}

beginWrite() { /* ... */}

endWrite() { /* ... */}

entry queue:

writeOK.blocked:

2nReaders:
executing

w

Déjà vu!

23 / 38

Readers-writers: the first version prioritizes readers

The first version ensures mutual exclusion but gives priority to
readers over writers.

r1active thread:

beginRead() { /* ... */}

endRead() { /* ... */}

beginWrite() { /* ... */}

endWrite() { /* ... */}

entry queue:

writeOK.blocked:

1nReaders:
executing

w

Déjà vu!
23 / 38

Readers-writers: the first version prioritizes readers

The first version is correct in that it ensures mutual exclusion
according to the readers-writers invariant.

However, it gives priority to readers over writers:

• new readers can enter the monitor without waiting as long as a
reader is active

• waiting writers have to wait until the last reader calls endRead and
signals writeOK

• as long as readers keep arriving and queuing for entering the
monitor, the waiting writers will never execute

Conversely, waiting readers are unblocked as soon as the current
writer finishes — independent of whether there are other writers
waiting.

24 / 38

Readers-writers: towards a fair solution

We show a fair solution, which gives equal priority to readers and
writers, using the signal and wait signaling discipline:

• readers give priority to waiting writers, so that a reader will be
able to begin reading as soon as the writers that have been
waiting longer finish

• writers give priority to waiting readers, so that a writer will be able
to begin writing as soon as the readers that have been waiting
longer finish

Implementing the same behavior under the signal and continue
discipline would require more explicit bookkeeping—a less elegant
solution, which we do not discuss explicitly.

This example shows how the semantics of signal and wait is easier to
understand and use in programs; unfortunately, it is not the semantics
available in most programming languages.

25 / 38

Readers-writers: entry methods — fair solution

Entry methods beginRead and beginWrite:

• wait until it is OK to read/write

• increment the number of readers/writers

public void beginRead() {

// wait until:

// no active writers and

// no blocked writers

if (nWriters > 0

|| !writeOK.isEmpty())

readOK.wait();

nReaders += 1;

// more readers welcome

readOK.signal();

}

public void beginWrite() {

// wait until:

// no active writers and

// no active readers

if (nWriters > 0

|| nReaders > 0)

writeOK.wait();

nWriters += 1;

}

give priority to waiting writers over readers

no waiting loop under signal and wait (a loop would lose signals)

26 / 38

Readers-writers: entry methods — fair solution

Entry methods beginRead and beginWrite:

• wait until it is OK to read/write

• increment the number of readers/writers

public void beginRead() {

// wait until:

// no active writers and

// no blocked writers

if (nWriters > 0

|| !writeOK.isEmpty())

readOK.wait();

nReaders += 1;

// more readers welcome

readOK.signal();

}

public void beginWrite() {

// wait until:

// no active writers and

// no active readers

if (nWriters > 0

|| nReaders > 0)

writeOK.wait();

nWriters += 1;

}

give priority to waiting writers over readers
no waiting loop under signal and wait (a loop would lose signals)

26 / 38

Readers-writers: exit methods — fair solution

Exit methods endRead and endWrite:

• decrement the number of readers/writers

• signal waiting readers/writers

public void endRead() {

nReaders -= 1;

// if last reader: one

// waiting writer can resume

if (nReaders == 0)

writeOK.signal();

}

public void endWrite() {

nWriters -= 1;

// if no waiting readers: one

// waiting writer can resume

if (readOK.isEmpty())

writeOK.signal();

else

// otherwise: one waiting

// reader can resume

readOK.signal();

}

give priority to waiting readers over writers

beginRead signals readOK.signal() to other waiting readers
27 / 38

Readers-writers with priorities

Signaling readers prioritize writers, and signaling writers prioritize
readers. This provides a starvation free solution: writers and readers
take turn as they try to access the board.

It is not difficult to adapt MonitorBoard’s implementation to implement
different priorities (readers over writers, or writers over readers).

28 / 38

Dining philosophers

Dining philosophers: the problem — recap

interface Table {

// philosopher k picks up forks

void getForks(int k);

// philosopher k releases forks

void putForks(int k);

}

Dining philosophers problem: implement Table such that:

• forks are held exclusively by one philosopher at a time

• each philosopher only accesses adjacent forks

Our solution now uses again the signal and continue discipline.
29 / 38

The state of the forks

We model the forks’ state with an array forks: fork[k] == -1 if fork k

is on the table; otherwise fork[k] is the number of the philosopher
holding fork k. Similarly, condition variable available[k] is used to
signal that fork k has become available.

monitor class MonitorTable implements Table {

int[] forks = new int[N] { -1 }; // initialized to all -1

Condition[] available = new Condition[N];

invariant { ∀k: -1 <= fork[k] < N }

void putForks(int k) {

forks[left(k)] = -1; // put down left fork

available[left(k)].signal(); // notify waiting thread

forks[right(k)] = -1; // put down right fork

available[right(k)].signal(); // notify waiting thread

}

30 / 38

Picking up forks

We rely on the monitor’s implicit locks to acquire both forks atomically.

void getForks(int k) {

while (forks[left(k)] >=0)

available[left(k)].wait(); // wait for left fork

forks[left(k)] = k; // pick up left fork

while (forks[right(k)] >= 0)

available[right(k)].wait(); // wait for right fork

forks[right(k)] = k; // pick up right fork

}

If philosopher k blocks waiting for the right fork, it will release the lock
on the monitor, but k’s left neighbor will still find the philosopher k’s
left fork unavailable. Can this determine a deadlock?

31 / 38

Deadlock analysis

If Pk blocks waiting for the right fork, it will release the lock on the
monitor, but Pk ’s left neighbor Pk−1 will still find the philosopher Pk ’s
left fork unavailable. Can this determine a deadlock?

Suppose Pk is waiting for the right fork while holding the left fork.

• Since monitor methods are executed atomically, when Pk started
executing getForks, Pk+1 was already holding Pk ’s right fork, and
thus Pk+1 started executing getForks before Pk did.

• Let ek be the time when Pk starts executing getForks.

• A deadlock occurs only if there is circular waiting, which is
possible only if every Pj is waiting for the right fork from Pj ’s
neighbor Pj+1.

• The condition for deadlock is thus ek > ek+1 > · · · > ek−1 > ek ,
which is contradictory: a deadlock is impossible.

32 / 38

Fairness analysis

Can a philosopher starve by never getting access to both forks?

Suppose Pk is waiting for the right fork while holding the left fork:

• As soon as Pk ’s right neighbor Pk+1 is done eating, Pk will be
moved to the entry queue of the monitor.

• Pk+1 is the only philosopher who can take the fork again, but in
order to do so Pk+1 has to re-enter the monitor by queuing at the
entry after Pk .

• Therefore Pk will get to have both forks, and will be able to eat.

Suppose Pk is waiting for the left fork:

• As soon as Pk ’s left neighbor Pk−1 is done eating, Pk will be
moved to the entry queue of the monitor.

• Pk−1 is the only philosopher who can take the fork again, but in
order to do so Pk−1 has to re-enter the monitor by queuing at the
entry after Pk .

• Therefore Pk will get the left fork at the next attempt.
• As explained above, Pk will be able to eat from this configuration. 33 / 38

Sleeping barber

The sleeping barber

A barbershop has a barber chair and some chairs for waiting
customers.

• If there are no waiting customer, the barber
takes a nap

• If there are customers waiting in the chairs,
the barber calls one up for a haircut

• If a customer enters the barbershop and
finds the barber sleeping, the customer
wakes up the barber and gets a haircut
immediately

• If a customer arrives when the barber is
working, the customer sits in one of the
available chairs

• If a customer arrives and finds no empty
chairs, the customer leaves right away

Our solution now uses again the signal and continue discipline. 34 / 38

The sleeping barber: motivation

The sleeping barber is a synchronization problem between two
asymmetric parties — a customer and the barber.

• They are asymmetric because barber and customers have
different obligations and behavior

• They abstract a client/server relationship between threads

• In a way, the problem is an asymmetric variant of barrier
synchronization

35 / 38

Sleeping barber: the problem

interface Barbershop {

// try to get a haircut

// block if waiting slots are available

void enter();

// serve next customer

// block if no customers

void serve();

}

Sleeping barber problem: implement Barbershop such that:

• barber and customers behave as explained above

• it supports an arbitrary number of customers (possibly changing
over time)

• it ensures starvation freedom

36 / 38

Barber and customers

The customers continuously and asynchronously arrive at the
barbershop; the barber continuously try to serve customers.

Barbershop shop;

customerk barber

while (true) {

shop.enter();

// go on with your life

}

while (true) {

shop.serve();

}

37 / 38

Barbershop with monitors

monitor class MonitorBarbershop implements Barbershop {

int freeChairs = n; // n waiting chairs

Condition barber = new Condition(); // signals barber available

Condition customer = new Condition(); // signals customer available

public void enter() {

// if waiting chairs available

if (freeChairs > 0) {

// sit down

freeChairs -= 1;

// wake up barber

customer.signal();

// wait turn

barber.wait();

}

}

public void serve() {

// wait for customers

while (freeChairs == n)

customer.wait();

// call waiting customer

barber.signal();

// customer moves to

// barber chair

freeChairs += 1;

// do haircut

}

no effect
if barber
already
is working

at least one
customer waiting

should this be in a loop?

38 / 38

Barbershop with monitors

monitor class MonitorBarbershop implements Barbershop {

int freeChairs = n; // n waiting chairs

Condition barber = new Condition(); // signals barber available

Condition customer = new Condition(); // signals customer available

public void enter() {

// if waiting chairs available

if (freeChairs > 0) {

// sit down

freeChairs -= 1;

// wake up barber

customer.signal();

// wait turn

barber.wait();

}

}

public void serve() {

// wait for customers

while (freeChairs == n)

customer.wait();

// call waiting customer

barber.signal();

// customer moves to

// barber chair

freeChairs += 1;

// do haircut

}

no effect
if barber
already
is working

at least one
customer waiting

should this be in a loop?

38 / 38

Barbershop with monitors

monitor class MonitorBarbershop implements Barbershop {

int freeChairs = n; // n waiting chairs

Condition barber = new Condition(); // signals barber available

Condition customer = new Condition(); // signals customer available

public void enter() {

// if waiting chairs available

if (freeChairs > 0) {

// sit down

freeChairs -= 1;

// wake up barber

customer.signal();

// wait turn

barber.wait();

}

}

public void serve() {

// wait for customers

while (freeChairs == n)

customer.wait();

// call waiting customer

barber.signal();

// customer moves to

// barber chair

freeChairs += 1;

// do haircut

}

no effect
if barber
already
is working

at least one
customer waiting

should this be in a loop?
only for spurious wakeups

38 / 38

	Resource allocator
	Barriers
	Readers-writers
	Dining philosophers
	Sleeping barber

