Real World Distributed and
Concurrent Programming using
Erlang

Chalmers 2017-03-01

Cons T Ahs

cahs@cisco.com/cons@tail-f.com
@lisztspace

c c tajl-f Tail-fis now stlrer]n
I s o 9 partof Cisco. CISCO.

mailto:cahs@cisco.com
mailto:cons@tail-f.com?subject=

Overview

Presentation of me, Cisco and tail-f
The two products of tail-f engineering
Large and small scale concurrency and distribution

Hardware trends, modern hardware and models of
concurrency and distribution

Erlang - the language and virtual machine

Cons T Ahs

« Technical Leader at Cisco since Sept, 2014
« Core developer using (almost) only Erlang (and some C)
« Previous:
 Keeper of The Code & developer, Klarna (lots of Erlang)
+ Independent consultant (Lisp, Prolog, Java, C, C++, Actionscript, ..)
- online poker, medical image analysis, speech synthesis, music notation, 3D graphics, real
time video decoding, networking, financial systems, compilers and language
implementation, teaching, ..

 Lecturer and researcher at Uppsala University

- teaching at all levels of Computing Science Programme (fundamentals, algorithms,
compilers, functional programming, logic programming, tools, ..)

- formal methods of programs, language implementation, theorem proving

Cisco

Well known manufacturer of network equipment
(routers, switches, firewalls, ..) mainly for enterprise
use

A large company

Hardware is getting cheaper, more difficult to
sustain on that alone

Networks are getting larger and needs to be
configured and include high lever services, e.g., VPN

Tail-f

» A small Swedish company focused on network
configuration

» Two products:

* ConiD - network device configuration (small
scale)

* NSO (NCS) - network service configuration (large
scale)

Cisco +Tail-f = true

» Cisco acquired tail-f mid 2014
* We’re now called Tail-f engineering

» Main reason to strengthen area of large scale
network configuration (NSO) and the requirements
of service providers

* ConiD (used by competitors to Cisco) still available,

even as free product (ConfD Basic), under Tail-f
brand

Tail-f ContD

» Typical customer: network device manufacturer (Cisco and
competitors to Cisco)

* Problem solved:

« network device configuration needs interfaces (at least one of
CLI, web Ul, snmp, netconf, REST)

* decouple hardware design and specifics from software

* focus on hardware and interface between hardware and
(generic) software

» same hardware, different properties through configuration

Tail-f ContD

 provide (generate/render) standard northbound interfaces:
» device model is written in Yang (RFC 6020)
» a hierarchical data model
* Northbound interfaces are generated from the Yang model
 netconf, snmp, CLI, web Ul, REST

* several interfaces and sessions can be active at the
same time

ContD architecture

» Very much is generated from the Yang model

>

drivers

hardware

Tail-f ContD

Device configuration (and operational data) stored in hierarchical database (cdb) which corresponds to data
model

« cdb is written in house (combination of Erlang and C)
Configuration changes are done with transactions

 crucial since several sessions (via same or different interfaces) can be active at the same time
Subscribe to changes in data model and react on them

 change IP in config -> reconfigure hardware

« subscribers typically written in C and communicates directly with the hardware
Operational data is, e.g., statistics

« described in Yang

* has similar, but not identical, semantics as config data

- typically written from southbound interface, i.e., hardware drivers and reported/used in data model and
other subscribers

Tail-f NSO
(Network Service Orchestrator)

- Typical customer: ISPs, network operators, large enterprises
 Problem solved:

» configuring services, e.g., a VPN, in networks entails configuring a large number
(hundreds, thousands..) of individual devices

+ slow and error prone to do this manually
« whole network might end up in faulty or unusable state
- installation of new services can go from weeks to minutes
 Describe services (with Yang) and reconfigure large sets of devices in transactions

« Uses cdb as well, both to describe the internal state of NSO and the state of the
devices it manages

NSO and ContD

NSO is the natural generalization of ConfD

NSO uses standardised interfaces on the devices it manages;
these devices are often (already) using ConfD

If not, a device can be described in Yang together with
interface/driver code. NSO uses the Yang model and the
driver code communicates with the device.

« NSO sees it as any “device”

Shares a large part of code base with ConfD - NSO is
essentially a large service written on top of ConfD

Distribution in NSO

e Large number of devices to manage
» Talk to several devices at the same time
e Concurrency needed more to handle latency rather than parallel computation

SO

7|\

device device device device

Distribution in NSO

e Large distances, latency, large number of devices
 make clusters of NSO instances - an NSO instance
can manage either other NSO instances or devices

w
e

:

.

Distribution in NSO

* requirements on high availability (HA)
 master and several standby slaves
e a slave will take over when the master fails
e current state of data model must be distributed from
master (read/write mode) to slaves (read only mode)

NSO
(Master) E e —

N

Distribution in NSO

 All modes (multiple devices, clusters and HA) can be
combined to form a scalable and robust network
management system

* Problems to solve on the development side are

» data consistency between models on (several) NSO
instances and actual devices

* resource management, e.g., connections and bandwidth

» customers doing unexpected things

Joe Armstrong Says:
Edch yedv youvr sequential Progvaws
will Wv.
Each Yeav your concurvent Programs

f

* (Single core) processors are not really getting faster
* Processors grow more cores instead

10,000,000

Dual-Core Itanium 2 o
1,000,000

5]
Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun) ¥

100,000
10,000
1,000

100

10

@ Transistors (000)
® Clock Speed (MH2)
o0 A Power (W)

@ Perf /Clock (ILP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

Moore’s law (1965) backwards in time

1.E+13 ————— .
een sty ™ siconex
12412 | SC5832
*
1.E+11 - . -
* .. * %
1.E+10 - . :;3 i
Cray CS6400 o
; b
5 1.E+09 .:
L
S 1.E+08 Cray 1 supercomputer o o .o - .
-4 0.3 s
e,
2 1E+07 ¢ ot
§ ¢ .‘g * :‘ .
S 1.E+06 R TR
— . oF* 0730 Tl
B ot X
2 1E+05 ORI e 30
-— . * 'Y
8 .::.o o T :’: ¢
= 0 L ad
E 1 E+04 BMT70s ¢ o
¥ ® . * L
e .
% o PR Commodore 64
1.E+03 - s$. “: DEC PDP-8
'Y d
o :3.. ¢
1.E+02 - e 1
Enlac Py
101 . . IBM 1130
+01 A
: L e
Harvard Mark Il
1.E+00 - v

1940 1950 1960 1970 1980 1990 2000 2010

Computation growth over technological shifts

]015

.IOlO

10°-

10°

10°

O
>
S
&>
0}
Q
O
=
O
O
O
9P
@
Q
w
-
O
O
>
S,
O
O

1 0'] 0 Electromechanical

1900 10 20 30 40 50 %0 70 80 90 DQQ() 0810

Humans, on the other hand..

 The cost of developers are growing

- Compare the amount of computational power that can be bought for a man month
over the years.

 Are we really getting more productive over the years?
- Faster machines do not enable us to think faster

- We can reuse more (due to sheer availability), but find the right tool is time
consuming and the fit might nor be perfect anyway

- Better tools and languages are probably more of an enabler than faster hardware.
- Faster hardware is an enabler for the better tools and languages

 Higher level languages with simple semantics and no low level memory
management are very attractive

Brace yourself
more cores are coming..

+ Sequential programming is not enough
- What you need:
- A language that supports threads and/or processes
» Proficiency at writing concurrent and distributed
programs

- Every interesting language today supports
multithreading

« Actual model differs

- Different models give rise to different problems

« Code that works is more interesting than fast non
working code

Distribution and concurrency
at different levels

» Concurrency on single core machines
- time sharing, OS scheduled processes
» Multi processor machines
» Distribution among machines
 Multi core processors

 Combinations of above

Potential problems with concurrent
and distributed programming

- Shared and mutable state
- low level problems, low level solutions
* can happen on single core processors
« Time
- computations can literally happen at the same time

- if computations happen on different nodes, how do you know which was
first?

- consistency of data view on different nodes

» No general solutions - depends on domain

Why Erlang?

 Erlang is just like any other tool or language
Choice of language/technology is seldom a deep process

» Stronger correlation to the developers than the problem, especially if
the set of developers is given from the start (the comfort zone)

» Choose the language that you feel most comfortable with!
There are good and bad fits in terms of language and problem

- Erlang is a good fit for networking, but not an obvious good fit for
configuration

« The founders of Tail-f had an extensive knowledge of Erlang

Erlang - the good parts

- Small language (in terms of language definition)

- Single assignment

» Functional sequential semantics

 Higher order functions

» Beam - the virtual machine is an extraordinary work of technology
- Start fast and small

* Grow large and robustly handle a very large number of
processes and very large memory spaces

Erlang - the good parts

* Process semantics
» Few and simple primitives
* spawn, send, receive and 1ink
* No shared or mutable state - take away both sources of problems
* A process starts fast and small, but can grow very large
* Memory management

-+ Each process has its own memory - simple life cycle
management

Erlang - the good parts

« Hot code loading

* Nice for systems that have a low tolerance for downtime,
e.g., telecom and financial systems

 Easy distribution from the start

- makes scaling “simpler” - it is never trivial, especially
when you need to maintain state across several instances

» Recall Brewer’s CAP “theorem” (Consistency, Availability,
Partition tolerance - choose any two (at most))

Erlang - the good parts

* OTP - Open Telecom Platform
 not really part of Erlang - you can avoid using/
loading (parts of) OTE but will probably end up
rewriting at least parts of OTP anyway

« set of libraries and utilities

 add generic components, e.g., gen server, with
behaviours

» robust and battle proven

Erlang - the bad parts

 The syntax

 evermixup,;.?

- awkward syntax for closures/lambdas/funs (whatever you want to call them)
* leftover from the initial implementation i Prolog

 No real strings (also a leftover from Prolog)

* The broken if..

« admittedly one of the least used constructs in Erlang
 No scoping rules or actually just one - the whole clause! (often leads to hard to find bugs)
- Being a dynamically typed language, static type checking is a very difficult problem

- dialyzer exists, but results in the a type checker generating a type system which is not
always consistent with runtime behavior

Erlang - the bad parts

- libraries are inconsistent - evolution vs design..

» No obvious support for abstraction, with some support bolted
on afterwards, e.g., records and maps

* “too easy” to build complex applications fast

» technical debt might build fast by using libraries causing
too tight coupling

» causes large problems later

- normal software engineering principles still apply

Interesting problems for
distributed 24/7 systems

» [CAP] Which two of consistency, availability and partition
tolerance do you focus on?

- How do you upgrade (software or hardware) your system
without being unavailable? [No downtime allowed]

» Lifespan of system larger than individual components

- How do you physically relocate your system without being
unavailable? [no downtime allowed]

- How do you change your persistent representation (database)
without being unavailable? [no downtime allowed]

* How do you design your system architecture to be failure
resistent and without domino effects?

An interesting problem in
parallelisation and distribution

* Background:

- When communicating with several devices you want to do it in
parallel, not sequentially

« We had code for this, but we wanted to make it better in terms of
behaving better on crashes and timeouts (this is reality)

 During this we found bugs in the parallel utilization - it was lower
than expected and sequential in the extreme

- Having the collection of devices as a list and mapping a function over
them is a reasonable and simple model.

« Also accurate - this is what we use

Sequential map

» Sequential version

map(_F, []1) — [];
map(F, [E | Es]) — [F(E) | map(F, Es)].

» Simple and straight forward

» Will be “slow” on multi core machine by using
only one core

» Make it “faster” by utilizing more cores

Parallel map
(straightforward solution)

pmap(F, List) —>
I = self(),
S = fun(E) —
spawn(fun() —> I ' {self(), F(E)} end)
end,
C = fun(Pid) —>
receive {Pid, Res} —> Res end
end,

lists:map(C, lists:map(S, List)).

» Spawn one process for each element (returns pid of
newly spawned process “directly”)

» Collect results in same order using selective receive

* [No, you can’t do both maps at the same time - why?]

Parallel map

 Naive or troublesome

» Directly spawns one process for each element - this will be
wasteful when the number of elements is large (length(List)
>> N¢ores) and depending on what is done for each element

- What happens when a process for an element crashes? It’s lost and
the initial call to pmap/2 will never return since the result is never

sent.

» Selective receive hides complexity (simple code, but need to search
mailbox for every run) [not really a big issue]

* Does order of results really matter?

Parallel map

» Write a parallel map that

can impose resource restrictions, i.e., the number of processes run
in parallel

utilises maximum parallelism in the light of the above restriction,
i.e., only slack off when there are few results left

handles processes that crash in a reasonable way, i.e., at least does
not hang, but might also make it possible to distinguish between
successful and crashed processes

lets the user determine if the order of the results matter, i.e., either
return results in the same order as the initial list or in the order
they arrive

Questions?

