
Real World Distributed and
Concurrent Programming using

Erlang
Chalmers 2017-03-01

Cons T Åhs
cahs@cisco.com/cons@tail-f.com

@lisztspace

mailto:cahs@cisco.com
mailto:cons@tail-f.com?subject=

Overview
• Presentation of me, Cisco and tail-f

• The two products of tail-f engineering

• Large and small scale concurrency and distribution

• Hardware trends, modern hardware and models of
concurrency and distribution

• Erlang - the language and virtual machine

Cons T Åhs
• Technical Leader at Cisco since Sept, 2014

• Core developer using (almost) only Erlang (and some C)

• Previous:

• Keeper of The Code & developer, Klarna (lots of Erlang)

• Independent consultant (Lisp, Prolog, Java, C, C++, Actionscript, ..)

• online poker, medical image analysis, speech synthesis, music notation, 3D graphics, real
time video decoding, networking, financial systems, compilers and language
implementation, teaching, ..

• Lecturer and researcher at Uppsala University

• teaching at all levels of Computing Science Programme (fundamentals, algorithms,
compilers, functional programming, logic programming, tools, ..)

• formal methods of programs, language implementation, theorem proving

Cisco
• Well known manufacturer of network equipment

(routers, switches, firewalls, ..) mainly for enterprise
use

• A large company

• Hardware is getting cheaper, more difficult to
sustain on that alone

• Networks are getting larger and needs to be
configured and include high lever services, e.g., VPN

Tail-f
• A small Swedish company focused on network

configuration

• Two products:

• ConfD - network device configuration (small
scale)

• NSO (NCS) - network service configuration (large
scale)

Cisco +Tail-f = true
• Cisco acquired tail-f mid 2014

• We’re now called Tail-f engineering

• Main reason to strengthen area of large scale
network configuration (NSO) and the requirements
of service providers

• ConfD (used by competitors to Cisco) still available,
even as free product (ConfD Basic), under Tail-f
brand

Tail-f ConfD
• Typical customer: network device manufacturer (Cisco and

competitors to Cisco)

• Problem solved:

• network device configuration needs interfaces (at least one of
CLI, web UI, snmp, netconf, REST)

• decouple hardware design and specifics from software

• focus on hardware and interface between hardware and
(generic) software

• same hardware, different properties through configuration

Tail-f ConfD
• provide (generate/render) standard northbound interfaces:

• device model is written in Yang (RFC 6020)

• a hierarchical data model

• Northbound interfaces are generated from the Yang model

• netconf, snmp, CLI, web UI, REST

• several interfaces and sessions can be active at the
same time

ConfD architecture
• Very much is generated from the Yang model

Physical device

ConfD

hardware

Yang model core

drivers

CLI WEB UINETCONF RESTSNMP

CDB

Tail-f ConfD
• Device configuration (and operational data) stored in hierarchical database (cdb) which corresponds to data

model

• cdb is written in house (combination of Erlang and C)

• Configuration changes are done with transactions

• crucial since several sessions (via same or different interfaces) can be active at the same time

• Subscribe to changes in data model and react on them

• change IP in config -> reconfigure hardware

• subscribers typically written in C and communicates directly with the hardware

• Operational data is, e.g., statistics

• described in Yang

• has similar, but not identical, semantics as config data

• typically written from southbound interface, i.e., hardware drivers and reported/used in data model and
other subscribers

Tail-f NSO
(Network Service Orchestrator)
• Typical customer: ISPs, network operators, large enterprises

• Problem solved:

• configuring services, e.g., a VPN, in networks entails configuring a large number
(hundreds, thousands..) of individual devices

• slow and error prone to do this manually

• whole network might end up in faulty or unusable state

• installation of new services can go from weeks to minutes

• Describe services (with Yang) and reconfigure large sets of devices in transactions

• Uses cdb as well, both to describe the internal state of NSO and the state of the
devices it manages

NSO and ConfD
• NSO is the natural generalization of ConfD

• NSO uses standardised interfaces on the devices it manages;
these devices are often (already) using ConfD

• If not, a device can be described in Yang together with
interface/driver code. NSO uses the Yang model and the
driver code communicates with the device.

• NSO sees it as any “device”

• Shares a large part of code base with ConfD - NSO is
essentially a large service written on top of ConfD

Distribution in NSO
• Large number of devices to manage
• Talk to several devices at the same time
• Concurrency needed more to handle latency rather than parallel computation

NSO

device device device device device device

Distribution in NSO
• Large distances, latency, large number of devices
• make clusters of NSO instances - an NSO instance

can manage either other NSO instances or devices
(or both)

NSO

NSONSO
NSO

NSO NSO
dev devdev

dev

dev

dev devdev

dev

devdev

devdevdev

Distribution in NSO
• requirements on high availability (HA)

• master and several standby slaves
• a slave will take over when the master fails
• current state of data model must be distributed from

master (read/write mode) to slaves (read only mode)

NSO
(master)

NSO
(slave) NSO

(slave) NSO
(slave)

devdevdevdev
devdevdevdev

Distribution in NSO
• All modes (multiple devices, clusters and HA) can be

combined to form a scalable and robust network
management system

• Problems to solve on the development side are

• data consistency between models on (several) NSO
instances and actual devices

• resource management, e.g., connections and bandwidth

• customers doing unexpected things

Each���������	
��
������������������ year���������	
��
������������������ your���������	
��
������������������ sequential���������	
��
������������������ p
rograms���������	
��
������������������

will���������	
��
������������������ go���������	
��
������������������ slower.

Joe���������	
��
������������������ Armstrong���������	
��
������������������ says:

Each���������	
��
������������������ year���������	
��
������������������ your���������	
��
������������������ concurrent���������	
��
������������������ programs���������	
��
������������������
will���������	
��
������������������ go���������	
��
������������������ faster.

• (Single core) processors are not really getting faster
• Processors grow more cores instead

Moore’s law (1965) backwards in time

Computation growth over technological shifts

Humans, on the other hand..
• The cost of developers are growing

• Compare the amount of computational power that can be bought for a man month
over the years.

• Are we really getting more productive over the years?

• Faster machines do not enable us to think faster

• We can reuse more (due to sheer availability), but find the right tool is time
consuming and the fit might nor be perfect anyway

• Better tools and languages are probably more of an enabler than faster hardware.

• Faster hardware is an enabler for the better tools and languages

• Higher level languages with simple semantics and no low level memory
management are very attractive

Brace yourself
more cores are coming..

• Sequential programming is not enough
• What you need:

• A language that supports threads and/or processes
• Proficiency at writing concurrent and distributed

programs
• Every interesting language today supports

multithreading
• Actual model differs
• Different models give rise to different problems
• Code that works is more interesting than fast non

working code

Distribution and concurrency
at different levels

• Concurrency on single core machines

• time sharing, OS scheduled processes

• Multi processor machines

• Distribution among machines

• Multi core processors

• Combinations of above

Potential problems with concurrent
and distributed programming

• Shared and mutable state

• low level problems, low level solutions

• can happen on single core processors

• Time

• computations can literally happen at the same time

• if computations happen on different nodes, how do you know which was
first?

• consistency of data view on different nodes

• No general solutions - depends on domain

Why Erlang?
• Erlang is just like any other tool or language

• Choice of language/technology is seldom a deep process

• Stronger correlation to the developers than the problem, especially if
the set of developers is given from the start (the comfort zone)

• Choose the language that you feel most comfortable with!

• There are good and bad fits in terms of language and problem

• Erlang is a good fit for networking, but not an obvious good fit for
configuration

• The founders of Tail-f had an extensive knowledge of Erlang

Erlang - the good parts
• Small language (in terms of language definition)

• Single assignment

• Functional sequential semantics

• Higher order functions

• Beam - the virtual machine is an extraordinary work of technology

• Start fast and small

• Grow large and robustly handle a very large number of
processes and very large memory spaces

Erlang - the good parts
• Process semantics

• Few and simple primitives

• spawn, send, receive and link

• No shared or mutable state - take away both sources of problems

• A process starts fast and small, but can grow very large

• Memory management

• Each process has its own memory - simple life cycle
management

Erlang - the good parts
• Hot code loading

• Nice for systems that have a low tolerance for downtime,
e.g., telecom and financial systems

• Easy distribution from the start

• makes scaling “simpler” - it is never trivial, especially
when you need to maintain state across several instances

• Recall Brewer’s CAP “theorem” (Consistency, Availability,
Partition tolerance - choose any two (at most))

Erlang - the good parts
• OTP - Open Telecom Platform

• not really part of Erlang - you can avoid using/
loading (parts of) OTP, but will probably end up
rewriting at least parts of OTP anyway

• set of libraries and utilities

• add generic components, e.g., gen_server, with
behaviours

• robust and battle proven

Erlang - the bad parts
• The syntax

• ever mix up , ; . ?

• awkward syntax for closures/lambdas/funs (whatever you want to call them)

• leftover from the initial implementation i Prolog

• No real strings (also a leftover from Prolog)

• The broken if..

• admittedly one of the least used constructs in Erlang

• No scoping rules or actually just one - the whole clause! (often leads to hard to find bugs)

• Being a dynamically typed language, static type checking is a very difficult problem

• dialyzer exists, but results in the a type checker generating a type system which is not
always consistent with runtime behavior

Erlang - the bad parts
• libraries are inconsistent - evolution vs design..

• No obvious support for abstraction, with some support bolted
on afterwards, e.g., records and maps

• “too easy” to build complex applications fast

• technical debt might build fast by using libraries causing
too tight coupling

• causes large problems later

• normal software engineering principles still apply

Interesting problems for
distributed 24/7 systems

• [CAP] Which two of consistency, availability and partition
tolerance do you focus on?

• How do you upgrade (software or hardware) your system
without being unavailable? [No downtime allowed]
• Lifespan of system larger than individual components

• How do you physically relocate your system without being
unavailable? [no downtime allowed]

• How do you change your persistent representation (database)
without being unavailable? [no downtime allowed]

• How do you design your system architecture to be failure
resistent and without domino effects?

An interesting problem in
parallelisation and distribution
• Background:

• When communicating with several devices you want to do it in
parallel, not sequentially

• We had code for this, but we wanted to make it better in terms of
behaving better on crashes and timeouts (this is reality)

• During this we found bugs in the parallel utilization - it was lower
than expected and sequential in the extreme

• Having the collection of devices as a list and mapping a function over
them is a reasonable and simple model.

• Also accurate - this is what we use

Sequential map
• Sequential version

• Simple and straight forward

• Will be “slow” on multi core machine by using
only one core

• Make it “faster” by utilizing more cores

map(_F, []) -> [];
map(F, [E | Es]) -> [F(E) | map(F, Es)].

Parallel map
(straightforward solution)

pmap(F, List) ->
 I = self(),
 S = fun(E) ->
 spawn(fun() -> I ! {self(), F(E)} end)
 end,
 C = fun(Pid) ->
 receive {Pid, Res} -> Res end
 end,
 lists:map(C, lists:map(S, List)).

• Spawn one process for each element (returns pid of
newly spawned process “directly”)

• Collect results in same order using selective receive
• [No, you can’t do both maps at the same time - why?]

Parallel map
• Naive or troublesome

• Directly spawns one process for each element - this will be
wasteful when the number of elements is large (length(List)
>> Ncores) and depending on what is done for each element

• What happens when a process for an element crashes? It’s lost and
the initial call to pmap/2 will never return since the result is never
sent.

• Selective receive hides complexity (simple code, but need to search
mailbox for every run) [not really a big issue]

• Does order of results really matter?

Parallel map
• Write a parallel map that

• can impose resource restrictions, i.e., the number of processes run
in parallel

• utilises maximum parallelism in the light of the above restriction,
i.e., only slack off when there are few results left

• handles processes that crash in a reasonable way, i.e., at least does
not hang, but might also make it possible to distinguish between
successful and crashed processes

• lets the user determine if the order of the results matter, i.e., either
return results in the same order as the initial list or in the order
they arrive

Questions?

