
Full-time wrapup 



Lecture 1: Real-time Rendering         
The Graphics Rendering Pipeline 

•  Three conceptual stages of the pipeline: 
–  Application (executed on the CPU) 

•  logic, speed-up techniques, animation, etc… 
–  Geometry 

•  Executing vertex and geometry shader 
•  Vertex shader:  

–  lighting computations per triangle vertex 
–  Project onto screen (3D to 2D) 

–  Rasterizer 
•  Executing fragment shader 
•  Interpolation of parameters (colors, texcoords etc) over triangle 
•  Z-buffering, fragment merge (i.e., blending), stencil tests… 

Application Geometry Rasterizer 

3D 
scene input 

Image 

output 



Tomas Akenine-Mőller © 2003 3 

Rendering Pipeline and  
Hardware 

HARDWARE 

Vertex  
shader 

Pixel 
shader 

Display 

Geometry 
shader Merger 

 
Appli-
cation 
Stage 
 

CPU 
 
Geometry Stage 
 

 
Rasterization Stage 

GPU 
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Hardware design 

light 

Geometry 

blue 

red green 

Vertex shader: 

• Lighting (colors) 

• Screen space positions 

HARDWARE 

Vertex  
shader 

Pixel 
shader 

Display 

Geometry 
shader Merger 

Geometry Stage 
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Hardware design Geometry shader: 

• One input primitive 

• Many output primitives 

HARDWARE 

Vertex  
shader 

Pixel 
shader 

Display 

Geometry 
shader Merger 

or 

Geometry Stage 
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Hardware design Clips triangles against 
the unit cube (i.e., 
”screen borders”) 

HARDWARE 

Vertex  
shader 

Pixel 
shader 

Display 

Geometry 
shader Merger 

Geometry Stage 
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Hardware design Maps window size to 
unit cube 

HARDWARE 

Vertex  
shader 

Pixel 
shader 

Display 

Geometry 
shader Merger 

Rasterizer Stage 
Geometry stage always operates inside 
a unit cube [-1,-1,-1]-[1,1,1] 
Next, the rasterization is made against a 
draw area corresponding to window 
dimensions. 



Hardware design 
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HARDWARE 

Vertex  
shader 

Pixel 
shader 

Display 

Geometry 
shader Merger 

Collects three vertices 
into one triangle Rasterizer Stage 



Hardware design 
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HARDWARE 

Vertex  
shader 

Pixel 
shader 

Display 

Geometry 
shader Merger 

Creates the fragments/
pixels for the triangle Rasterizer Stage 



blue 

red green 
Rasterizer 

Hardware design 
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HARDWARE 

Vertex  
shader 

Pixel 
shader 

Display 

Geometry 
shader Merger 

Pixel Shader: 
Compute color 
using: 
• Textures 
• Interpolated data 
(e.g. Colors + 
normals) from 
vertex shader 

Rasterizer Stage 



Hardware design 
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HARDWARE 

Vertex  
shader 

Pixel 
shader 

Display 

Geometry 
shader Merger 

Frame buffer: 
•  Color buffers 

•  Depth buffer 

•  Stencil buffer 

The merge units update 
the frame buffer with the 
pixel’s color 

Rasterizer Stage 



z-Buffer Algorithm 

• Use a buffer called the z or depth buffer to store 
the depth of the closest object at each pixel found 
so far 

• As we render each polygon, compare the depth 
of each pixel to depth in z buffer 

• If less, place shade of pixel in color buffer and 
update z buffer 

Also know double buffering! 



Screen Tearing 



Painter’s Algorithm 
• Render polygons a back to front order so that polygons 

behind others are simply painted over 

 
B behind A as seen by viewer Fill B then A 

• Requires ordering of polygons 
first  

– O(n log n) calculation for ordering 
– Not every polygon is either in 
front or behind all other polygons 

I.e., : Sort all triangles and  
render them back-to-front.  



GEOMETRY – transformation summary 
Application Geometry Rasterizer 

model space world space world space 

compute lighting 

camera space 

projection 
image space 

clip map to screen 
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v 
e 
r 
t 
e 
x 

Modelview 
Matrix 

Projection 
Matrix 

Perspective 
Division 

Viewport 
Transform 

Modelview 

Modelview 

Projection 

l 
l 
l 

object 
space 

eye 
space 

clip 
space 

(normalized 
device coords) 

window  
coords 

l  other calculations here 
–  Color / normal per vertex 
–  (backface culling) 
–  clipping 

Transformation 
Pipeline 

OpenGL | Geometry stage | done on GPU 

Lecture 2: 



camera 

Model space 
World space 

View space 

Model to World 
Matrix 

World to 
View 
Matrix 

ModelViewMtx = Model to 
View Matrix 
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Lecture 2: Transforms 

l Homogeneous notation 
l Projections 
l Quaternions 

–  Know what they are good for. Not knowing the 
mathematical rules.  

€ 

Use :  N= M−1( )
T

    instead of M

l  Scaling, rotations, translations 
l  Cannot use same matrix to transform normals 
 

l  …represents a rotation of 2φ radians     2φ r 
around axis uq of point p 

)cos,(sinˆ φφ quq =

1ˆˆˆ −qpq

(M-1)T=M 
if rigid-
body 
transform 
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Homogeneous notation 
l A point: 
l Translation becomes: 

l A vector (direction): 
l Translation of vector: 
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Translation part 

Rotation 
part 

02. Vectors and Transforms 



Change of Frames 
• How to get the Mmodel-to-world matrix: 
 

 
 
 

⎥
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E.g.:  pworld = Mm→w pmodel = Mm→w (0,5,0,1)T = 5 b  (+ o)  

b 

x 

y 

z 

c 

a 

o 

world space 

model space 

(Both coordinate systems are right-handed) 

P= 

0
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The basis vectors a,b,c 
are expressed in the 
world coordinate system 
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o 

world space 

model space 

Change of Frames 
pmodelspace =(px,py,pz) 

Let’s initially disregard the translation o. I.e., o=[0,0,0] 
X: One step along a results in ax steps along world space axis x. 
     One step along b results in bx steps along world space axis x. 
     One step along c results  in cx steps along world space axis x. 
 
The x-coord for p in world space (instead of modelspace) is thus [ax bx cx]p. 
The y-coord for p in world space is thus [ay by cy]p.  
The z-coord for p in world space is thus [az bz cz]p.  
  
With the translation o we get pworldspace= Mmodel-to-world pmodelspace 
 

Same example, just explained differently: 
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Projections 
l Orthogonal (parallel) and Perspective 

02. Vectors and Transforms 
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Orthogonal projection 
l Simple, just skip one coordinate 

–  Say, we’re looking along the z-axis 
–  Then drop z, and render 
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02. Vectors and Transforms 



DDA Algorithm 

• Digital Differential Analyzer 
– DDA was a mechanical device for numerical 
solution of differential equations 

– Line y=kx+ m satisfies differential equation 
        dy/dx = k = Δy/Δx = y2-y1/x2-x1 

• Along scan line Δx = 1 
y=y1; 
For(x=x1; x<=x2,ix++) { 
  write_pixel(x, round(y), line_color) 
  y+=k; 
} 

02. Rasterization, Depth Sorting and Culling: 



Using Symmetry 

• Use for 1 ≥ k ≥ 0 
• For k > 1, swap role of x and y 

– For each y, plot closest x 

02. Rasterization, Depth Sorting and Culling: 

Otherwise we get 
problem for steep 
slopes 



•  The problem with DDA is that it uses floats 
which was slow in the old days 

•  Bresenhams algorithm only uses integers 

You do not need to know Bresenham’s algorithm 
by heart. It is enough that you understand it if 
you see it. 

Very Important! 

02. Rasterization, Depth Sorting and Culling: 
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Lighting 
i=iamb+idiff+ispec+iemission 
 

+ + 

= 

Know how to compute components.  
Also, Blinns and Phongs highlight model 

Lecture 3: Shading  



Lighting 

Material: 
• Ambient   (r,g,b,a)  

• Diffuse   (r,g,b,a) 

• Specular   (r,g,b,a) 

• Emission   (r,g,b,a)  =”självlysande färg” 

Light: 
• Ambient   (r,g,b,a)  

• Diffuse   (r,g,b,a) 

• Specular   (r,g,b,a) 

 DIFFUSE Base color 
SPECULAR Highlight Color 
AMBIENT Low-light Color 
EMISSION Glow Color 
SHININESS Surface Smoothness 
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Lighting 
i=iamb+idiff+ispec+iemission 
 

03. Shading: 

I.e.: 
i=iamb+idiff+ispec+iemission 

 

ambambamb smi ⊗=

diffdiffdiff smlni ⊗⋅= )(

€ 

ispec =max(0,(h⋅ n))mshimspec ⊗ sspec

Phong’s reflection model: 

Blinn’s reflection model: 

emissionemission mi =€ 

ispec =max(0,(r⋅ v))mshimspec ⊗sspec
€ 

((n⋅ l) < 0)⇒ ispec /diff = 0
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Diffuse component : idiff 

l  i=iamb+idiff+ispec+iemission 

l Diffuse is Lambert’s law: φcos=⋅= lndiffi

l Photons are scattered equally in all 
directions 

diffdiffdiff smlni ⊗⋅= )(

03. Shading: 

(Note that n and l need to be 
normalized) 
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Lighting 
Specular component : ispec 

l Diffuse is dull (left) 
l Specular: simulates a highlight 

03. Shading: 
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Specular component: Phong 
l Phong specular highlight model 
l Reflect l around n: 

l)n2(nlr ⋅+−=

n 

l r 

-l 
nln )( ⋅

ln ⋅

shishi mm
speci )(cos)( ρ=⋅= vr

€ 

ispec =max(0,(r⋅ v))mshimspec ⊗sspec
l Next: Blinns highlight formula: (n.h)m 

03. Shading: 

(n needs to be 
normalized) 



Halfway Vector 

Blinn proposed replacing v·r by n·h where 
h = (l+v)/|l + v| 
(l+v)/2 is halfway between l and v 
If n, l, and v are coplanar: 
      ψ = φ/2

Must then adjust exponent 
so that (n·h)e’ ≈ (r·v)e 

(e’ ≈ 4e) 

03. Shading: 

specspec
m

spec
shi smnhi ⊗⋅= ))(,0max(
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Shading 
l Three common types of shading: 

–  Flat, Goraud, and Phong 
l  In standard Gouraud shading the lighting is computed per triangle vertex 

and for each pixel, the color is interpolated from the colors at the 
vertices. 

l  In Phong Shading the lighting is not  computed per vertex. Instead the 
normal is interpolated per pixel from the normals defined at the vertices 
and full lighting is computed per pixel using this normal. This is of course 
more expensive but looks better.  

  

03. Shading: 

Flat Gouraud Phong 
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l Color of fog:         color of surface:  fc sc

€ 

c p = fcs + (1− f )c f       f ∈[0,1]
l  How to compute f ? 
l  E.g., linearly: 

startend

pend

zz
zz

f
−

−
=
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Transparency and alpha 
l Transparency 

–  Very simple in real-time contexts 

l The tool: alpha blending (mix two colors) 
l Alpha (α) is another component in the 

frame buffer, or on triangle 
–  Represents the opacity  
–  1.0 is totally opaque 
–  0.0 is totally transparent 

l The over operator: 
 

dso ccc )1( αα −+=
Rendered object 

03. Shading: 

(Blending) 
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Transparency 
l Need to sort the transparent objects 

–  First, render all non-transparent triangles as 
usual.  

–  Then, sort all transparent triangles and 
render back-to-front with blending enabled.  
(and using standard depth test) 
l  The reason is to avoid problems with the depth test 

and because the blending operation (i.e., over 
operator) is order dependent. 

 
 

03. Shading: 



Gamma correction 
l  (Standard is 2.2) 
1.  Screen has non-linear color intensity 

1.  We often want linear output (e.g. antialiasing) 

2.  Also happens to give more efficient color space when 
compressing intensity from 32-bit floats to 8-bits. 
Thus, often desired when storing textures. 

Tomas Akenine-Mőller © 2002 

Gamma of 2.2 

better distribution for 
humans 

Truth 

On most displays (those with gamma of about 2.2), one can observe that the linear 
intensity output (bottom) has a large jump in perceived brightness between the intensity 
values 0.0 and 0.1, while the steps at the higher end of the scale are hardly perceptible.  
A linear input that has a nonlinearly-increasing intensity (upper), will show much more 
even steps in perceived brightness. 

)/1( γ
icc =
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Leture 3.2: Sampling, filtrering, and 
Antialiasing 

l When does it occur? 
–  In 1) pixels, 2) time, 3) texturing  

l Supersampling schemes 
l  Jittered sampling 

–  Why is it good? 



04. Texturing 

Most important: 
•  Texturing 

–  Mipmapping: bi/tri-linear filtering, anisotropic filtering 
•  Environment mapping 

–  Cube mapping 
•  Bump mapping 
•  3D-textures,  
•  Particle systems 
•  Sprites and billboards 
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FILTERING: 
l  For magnification: Nearest or Linear (box vs Tent 

filter) 

l  For minification: nearest, linear and… 
–  Bilinear – using mipmapping 
–  Trilinear – using mipmapping 
–  Anisotropic – up to 16 mipmap lookups along line of anisotropy 

Filtering 
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Interpolation 

Minification 

Magnification 
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Bilinear filtering using Mipmapping 
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Mipmapping 
l  Image pyramid 
l Half width and          

height when going            
upwards 

l Average over 4 ”parent texels” to form 
”child texel” 

l Depending on amount of minification, 
determine which image to fetch from 

l Compute d first, gives two images 
–  Bilinear interpolation in each 

u 

v 

d 
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Mipmapping 
l  Interpolate between those bilinear values 

–  Gives trilinear interpolation 

l Constant time filtering: 8 texel accesses 

v 
u 

d 

Level n+1 

Level n 

(u0,v0,d0) 
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Mipmapping: 
Memory requirements 
l Not twice the number of bytes…! 

1/4 
1/16 

1/1 

1/64 

Modified by Ulf Assarsson 2004 
l Rather 33% more – not that much 



Anisotropic texture filtering 

See page 
168-169 
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Environment mapping 

l  Assumes the environment is infinitely far away 
l  Sphere mapping, or Cube mapping  
l  Cube mapping is the norm nowadays 

Modified by Ulf Assarsson 2004 
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x 

y 

z 

Cube mapping 

l  Simple math: compute reflection vector, r 
l  Largest abs-value of component, determines which cube face. 

–  Example: r=(5,-1,2) gives POS_X face 
l  Divide r by abs(5) gives (u,v)=(-1/5,2/5) 
l  Also remap from [-1,1] to [0,1] by (u,v) = ((u,v)+vec2(1,1))*0.5; 
l  Your hardware does all the work for you. You just have to 

compute the reflection vector.  

n eye 
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Bump mapping 
l  by Blinn in 1978 
l  Inexpensive way of simulating wrinkles 

and bumps on geometry 
–  Expensive to model these geometrically 

l  Instead let a texture modify the normal at 
each pixel, and then use this normal to 
compute lighting per pixel 

geometry Bump map 
Stores heights: can derive normals 

+ 
Bump mapped geometry 

= 
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3D Textures 
l  3D textures: 

–  Texture filtering is no longer trilinear 
–  Rather quadlinear (linear interpolation 4 times) 
–  Enables new possibilities 

l  Can store light in a room, for example 



Sprites 
GLbyte M[64]=
{ 127,0,0,127, 127,0,0,127, 

127,0,0,127, 127,0,0,127,
0,127,0,0, 0,127,0,127, 
0,127,0,127, 0,127,0,0,
0,0,127,0, 0,0,127,127, 
0,0,127,127, 0,0,127,0,
127,127,0,0, 127,127,0,127, 
127,127,0,127, 127,127,0,0};

void display(void) {
glClearColor(0.0,1.0,1.0,1.0);
glClear(GL_COLOR_BUFFER_BIT);
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, 

GL_ONE_MINUS_SRC_ALPHA);
glRasterPos2d(xpos1,ypos1);
glPixelZoom(8.0,8.0);
glDrawPixels(width,height,

GL_RGBA, GL_BYTE, M);

glPixelZoom(1.0,1.0);
glutSwapBuffers();

}
 

Sprites (=älvor) was a technique 
on older home computers, e.g. 
VIC64. As opposed to billboards 
sprites does not use the frame 
buffer. They are rasterized 
directly to the screen using a 
special chip. (A special bit-
register also marked colliding 
sprites.) 

05. Texturing: 
Just know what “sprites” is 
and that they are very 
similar to a billboard 



Billboards 
•  2D images used 

in 3D 
environments 
– Common for 

trees, 
explosions, 
clouds, lens 
flares 



•  Rotate them towards viewer 
–  Either by rotation matrix or 
–  by orthographic projection 
 

Billboards 



•  Fix correct transparency by 
blending AND using alpha-
test 
–  In fragment shader: 

if (color.a < 0.1) discard; 

Billboards 
    Color Buffer         Depth Buffer 

With 
blending 

With 
alpha test 

If alpha value in texture 
is lower than this 
threshold value, the pixel 
is not rendered to. I.e., 
neither frame buffer nor 
z-buffer is updated,  
which is what we want to 
achieve.                     
E.g. here: so that objects behind is visible through the hole 



(Also called Impostors)  
 

axial billboarding  
The rotation axis is fixed and 
disregarding the view position 

n 
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Lecture 5: OpenGL 
l How to use OpenGL (or DirectX) 

–  Will not ask about syntax. Know how to use. 
l  I.e. functionality  

–  E.g. how to achieve 
l  Blending and transparency 
l  Fog – how would you implement in a fragment shader? 

–  pseudo code is enough  
l  Specify a material,  a triangle, how to translate or rotate an 

object. 
l  Triangle – vertex order and facing 
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l  Understand at pseudo code level! 

Reflections with environment 
mapping 

VERTEX SHADER 
in vec3  vertex; 
in  vec3  normalIn;  // The normal 
out vec3  normal;    
out vec3  eyeVector;   
uniform mat4 normalMatrix;    
uniform mat4 modelViewMatrix; 
uniform mat4 modelViewProjectionMatrix;  
 
void main()  
{ 
     gl_Position = modelViewProjectionMatrix *vec4(vertex,1); 
     normal = (normalMatrix * vec4(normalIn,0.0)).xyz; 
     eyeVector = (modelViewMatrix * vec4(vertex, 1)).xyz; 
} 

FRAGMENT SHADER 
in vec3 normal;  
in vec3 eyeVector;  
uniform samplerCube tex1;   
out vec4 fragmentColor; 
 
void main()  
{ 
    vec3 reflectionVector = normalize(reflect(normalize(eyeVector),     

              normalize(normal)));  
    fragmentColor = texture(tex1, reflectionVector); 
} 
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Buffers 
l  Frame buffer 

–  Back/front/left/right – glDrawBuffers() 
–  Offscreen buffers (e.g., framebuffer objects, auxiliary buffers) 

Frame buffers can consist of: 
l  Color buffer - rgb(a)  
l  Depth buffer (z-buffer) 

–  For correct depth sorting 
–  Instead of BSP-algorithm or painters algorithm… 

l  Stencil buffer 
–  E.g., for shadow volumes or only render to frame buffer where 

stencil = certain value (e.g., for masking). 
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Lecture 6: Intersection Tests 
l  4 techniques to compute intersections: 

–  Analytically 
–  Geometrically – e.g. ray vs box (3 slabs) 
–  SAT (Separating Axis Theorem) for convex polyhedra 

Test:  
1.  axes orthogonal to face of A,  
2.  axes orthogonal to face of B 
3.  All different axes formed by crossprod of one edge of A and one of B 

–  Dynamic tests – know what it means. 
l  E.g., describe an algorithm for intersection 

between a ray and a 
–  Polygon, triangle, sphere and plane. 

l  Know equations for ray, sphere, cylinder, 
plane, triangle 
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Analytical: 
Ray/plane intersection 

l  Ray: r(t)=o+td 
l  Plane formula: n•p + d = 0 

l  Replace p by r(t) and solve for t:  
 n•(o+td) + d = 0 
 n•o+tn•d + d = 0 
 t = (-d -n•o) / (n•d) 
  

o d n 

Here, one scalar equation 
and one unknown -> just 
solve for t. 
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Analytical: 
Ray/sphere test 
l  Sphere center: c, and radius r 
l  Ray: r(t)=o+td 
l  Sphere formula: ||p-c||=r 
l  Replace p by r(t): ||r(t)-c||=r 

0))(())(( 2 =−−⋅− rtt crcr

1||||     0)()())((2 22 ==−−⋅−+⋅−+ dcοcοdcο rtt

0)()( 2 =−−+⋅−+ rtt cdocdo

0)()())((2)( 22 =−−⋅−+⋅−+⋅ rtt cοcοdcοdd

o 

d 

c 
r 

This is a standard quadratic equation. Solve for t. 
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Geometrical: 
Ray/Box Intersection (2) 
l  Intersect the 2 planes of each slab with 

the ray 

min
xt

max
xt

min
yt

max
yt

l Keep max of tmin and min of tmax 

l  If tmin < tmax then we got an intersection 
l Special case when ray parallell to slab 



Point/Plane 
l  Insert a point x into plane equation: 

0:    :Plane =+⋅ dpnπ

?)( =+⋅= df xnx
plane on the s'for      0)( xxnx =+⋅= df

 sideother  on the s'for      0)( xxnx >+⋅= dfPositive 
half space 

plane  theof side oneon  s'for      0)( xxnx <+⋅= dfNegative 
half space 
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Sphere/Plane 
AABB/Plane 
l Sphere: compute 

0:    :Plane =+⋅ dpnπ
r            :Sphere c

maxmin        :Box bb
df +⋅= cnc)(

l  f (c) is the signed distance (n normalized) 

l Box: insert all 8 corners 
l  If all f ’s have the same sign, then all 

points are on the same side, and no 
collision 

l  abs( f (c)) > r      no collision 
l  abs( f (c)) = r      sphere touches the plane 
l  abs( f (c)) < r      sphere intersects plane 



n

AABB/plane 
l  The smart way (shown in 2D) 
l  Find the two vertices that have the most 

positive and most negative value when tested 
againt the plane 

OBB almost as easy. Just first project 
n on OBB’s axes – see p: 757 

Need only test 
the red points 

0:    :Plane =+⋅ dpnπ
r            :Sphere c

maxmin        :Box bb

vneg

v pos

v posx = (nx > 0)?bmaxx :bminx
v posy = (ny > 0)?bmaxy :bminy
v posz = (nz > 0)?bmax z :bminz
vnegx = (nx < 0)?bmaxx :bminx
vnegy = (ny < 0)?bmaxy :bminy
vnegz = (nz < 0)?bmax z :bminz
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Another analytical example: Ray/
Triangle in detail 

l Ray: r(t)=o+td 
l Triangle vertices: v0, v1, v2 
l A point in the triangle: 
l  t(u,v)=v0+u(v1 - v0 ) +v(v2 - v0 )=                 

=(1-u-v)v0+uv1+vv2      [u,v>=0, u+v<=1] 

l Set t(u,v)=r(t), and solve! 

v2 

v1 

v0 

v1 -v0 

v2 -v0 

⎟
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⎟

⎠

⎞

⎜
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⎝

⎛
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⎟
⎟
⎟

⎠

⎞
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⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
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Ray/Polygon: very briefly 
l  Intersect ray with polygon plane 
l Project from 3D to 2D 
l How? 
l Find max(|nx|,|ny|,|nz|) 
l Skip that coordinate! 
l Then, count crossing in 2D 
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View frustum testing example 

l  Algorithm:  
–  if sphere is outside any of the 6 frustum planes -> report ”outside”.  
–  Else report intersect. 

l  Not exact test, but not incorrect, i.e., 
–  A sphere that is reported to be inside, can be outside 
–  Not vice versa, so test is conservative 

outside 
frustum 

intersecting 
frustum 
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Lecture 7.1: Spatial Data Structures 
and Speed-Up Techniques 

l  Speed-up techniques 
–  Culling 

l  Backface 
l  View frustum (hierarchical) 
l  Portal 
l  Occlusion Culling 
l  Detail 

–  Levels-of-detail: 

l How to construct and use the spatial data 
structures  

l  BVH, BSP-trees (polygon aligned + axis aligned) 



Tomas Akenine-Mőller © 2002 

Axis Aligned Bounding Box 
Hierarchy - an example 
l Assume we click on screen, and want to 

find which object we clicked on 

click! 
1)  Test the root first 
2)  Descend recursively as needed 
3)  Terminate traversal when possible 
In general: get O(log n) instead of O(n) 
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How to create a BVH? 
Example: using AABBs 
l  Find minimal box, then split along longest axis 

x is longest Find minimal 
boxes 

Split along 
longest axis 

Find minimal 
boxes 

Called TOP-DOWN method 
Similar for other BVs 

AABB = Axis Aligned 
 Bounding Box 

BVH = Bounding Volume 
 Hierarchy 



Axis-aligned BSP tree 
Rough sorting 
l  Test the planes, recursively from root, against the point of view. For each 

traversed node: 
–  If node is leaf, draw the node’s geometry 
–  else 

l  Continue traversal on the ”hither” side with respect to the eye to sort front to back 
l  Then, continue on the farther side. 

eye 

0 

1a 

A B 

1b 

C 2 

D E 

1 

1a 1b 

2 

0 

2 3 
4 5 

l  Works in the same way for polygon-
aligned BSP trees --- but that gives 
exact sorting 



Polygon-aligned BSP tree 
l Allows exact sorting 
l Very similar to axis-aligned BSP tree 

–  But the splitting plane are now located in the 
planes of the triangles 

Know how to build it 
and how to traverse 
back-to-front or 
front-to-back with 
respect to the eye 
position (here: v) 

Drawing Back-to-Front { 
recurse on farther side of P;
Draw P;
Recurse on hither side of P;

}// farther/hither is with respect to eye pos.
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Scene graphs 
l  BVH is the data structure that is used most often 

–  Simple to understand 
–  Simple code 

l  However, BVH stores just geometry   
–  Rendering is more than geometry 

l  The scene graph is an extended BVH with: 
–  Lights 
–  Materials 
–  Transforms 
–  several 

connections 
to a node 

–  And more 

A Scene Graph is a hierarchical scene description – more 
typically a logical hierarchy (than e.g. spatial) 



Lecture 7.2: Collision Detection 
l  3 types of algorithms: 

–  With rays 
l  Fast but not exact 

–  With BVH 
l  Slower but exact 
l  You should be able to write pseudo code for BVH/BVH test 

for coll det between two objects. 

–  For many many objects. 
l  why? Course pruning of ”obviously” non-colliding objects 
l  Sweep-and-prune 
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Lecture 8: Ray tracing 
l  Adaptive Super Sampling 
l  Jittering 
l  How to stop ray tracing recursion? 

l  Speedup techniques 
–  Spatial data structures 

l  Optimizations for BVHs: skippointer tree 
l  Ray BVH-traversal 
l  (You do not need to learn the ray traversal  

 algorithms for Grids nor AA-BSP trees)  

–  Shadow cache 
l  Material (Fresnel: metall, dielectrics) 
l  Constructive Solid Geometry – how to implement 

A 
B 
D 
E 
F 
C 

A 

B 

D E F 

C 



Adaptive Supersampling 
Pseudo code: 
Color  AdaptiveSuperSampling() { 

–  Make sure all 5 samples exist 
l  (Shoot new rays along diagonal if necessary)   

–  Color col = black; 
–  For each quad i 

l  If the colors of the 2 samples are fairly similar 
–  col += (1/4)*(average of the two colors) 

l  Else  
–  col +=(1/4)* adaptiveSuperSampling(quad[i]) 

–  return col; 
} 

Tomas Akenine-Mőller © 2002 
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Summary of the Ray tracing-
algorithm: 

l  main()-calls trace() for each pixel 
l  trace(): should return color of closest hit point along ray.  

1.   calls findClosestIntersection()  
2.   If any object intersected → call shade(). 

l  Shade(): should compute color at hit point  
1.  For each light source, shoot shadow ray to determine if light source is visible  

If not in shadow, compute diffuse + specular  contribution. 
2.  Compute ambient contribution 
3.  Call trace() recursively for the reflection- and refraction ray. 

trace() 

shade() 

Image plane 
light 

trace() 

shade() 

trace() 

Point is in shadow 

07 + 08. Ray Tracing 



Data structures 
l Octree 

l Kd tree 

l Grids 

l Bounding box hierarchies  
Tomas Akenine-Mőller © 2002 

Including mail 
boxing Hierarchical 

grid 

Recursive 
grid 

Kd-tree = Axis-Aligned BSP tree with 
fixed recursive split plane order (e.g. 
x,y,z,x,y,z…) 
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Lecture 10 – Global Illumination 
l  Global illumination: 

–  Why is not standard ray tracing enough? 
–  rendering eq., BRDFs 
–   Monte Carlo Ray Tracing 
–  Path tracing 
–  Photon mapping 

Ray tracing 

Global 
Illumination 

')')(',()',,( ωωωωω dLfLL ireo nxx ⋅+= ∫
Ω



Lecture 10: What you need to know 
–  The rendering equation 

l  Be able to explain all its components 

–  Path tracing  
l  Why it is good, compared to naive monte-carlo sampling 
l  The overall algorithm (on a high level as in these slides). 

–  Photon Mapping 
l  The overall algorithm. See the summary slide on: 

–  Creating Photon Maps… 
–  Ray trace from eye… 
–  Growing spheres…  

–  Final Gather 
l  Why it is good. How it works: 

–  At the first diffuse hit, instead of using global map directly, sample indirect 
slow varying light around p by sampling the hemisphere with ~1000 rays 
and use the two  photon maps where those rays hit a diffuse surface. 

–  Bidirectional Path Tracing, Metropolis Light Transport 
l  Just their names. Don’t need to know the algorithms. 



Monte Carlo Ray Tracing (naively) 

l Sample indirect illumination by shooting 
sample rays over the hemisphere, at 
each hit.  
–  At some recursion depth, stop and compute 

standard local lighting (i.e., without indirect 
illumination) 

diffuse floor and wall  

eye 

Ulf Assarsson© 2007 



Monte Carlo Ray Tracing (naively) 
l This gives a ray tree with most rays at 

the bottom level. This is bad since these 
rays have the lowest influence on the 
pixel color. 

Ulf Assarsson© 2007 



PathTracing  
– a smarter Monte-Carlo ray-tracing method 
l  Path Tracing instead only traces one of the 

possible ray paths at a time. This is done by 
randomly selecting only one sample direction 
at a bounce. Hundreds of paths per pixel are 
traced. 

Ulf Assarsson© 2007 Equally number of rays are traced at each level 



Path Tracing – indirect + direct 
illumination 

l  Shoot many paths per pixel (the image just shows one 
light path). 

–  At each intersection,  
l  Shoot one shadow ray per light source 

–  at random position on light, for area/volumetric light sources 
l  and randomly select one new ray direction. 

diffuse floor and wall  

eye 

Ulf Assarsson© 2007 

light light 



Photon Mapping 
l  Creating Photon Maps:  

–  Trace photons (~100K-1M) from light source. Store them in kd-tree when they hit diffuse 
surface. Then, use russian roulette to decide if the photon should be absorbed or 
specularly or diffusively reflected. Create both global map and caustics map. For the 
Caustics map, we  send more of the photons towards reflective/refractive objects. 

l  Ray trace from eye:   
–  As usual: I.e., shooting primary rays and recursively shooting reflection/refraction rays, and 

at each intersection point p, compute direct illumination (shadow rays + shading).  
–  Also grow sphere around each p in caustics map to get caustics contribution and in global 

map to get slow-varying indirect illumination.  
–  If final gather is used: At the first diffuse hit, instead of using global map directly, sample 

indirect slow varying light around p by sampling the hemisphere with ~100 – 1000 rays and 
use the two photon maps where those rays hit a surface. 

l  Growing sphere:  
–  Uses the kd-tree to expand a sphere around  p until a fixed amount (e.g. 50) photons are 

inside the sphere. The radius is a measure of the intensity of indirect light at p. The BRDF 
at p could also be used to get a more accurate color and intensity value. 

Ulf Assarsson© 2007 



A modification for indirect 
Illumination – Final Gather 

l  Too noicy to use the global map for direct visualization 
l  Remember: eye rays are recursively traced (via reflections/

refractions) until a diffuse hit, p. There, we want to estimate slow-
varying indirect illumination. 

–  Instead of growing sphere in global map at p, Final Gather shoots 100-1000 indirect rays 
from p and grows sphere in the global map and also caustics map, where each of those 
rays end at a diffuse surface. 

diffuse floor and wall  

eye 

Ulf Assarsson© 2007 
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Lecture 11: Shadows + Reflection  
l  Point light / Area light 
l  Three ways of thinking about shadows 

–  The basis for different algorithms. 
l  Shadow mapping 

–  Be able to describe the algorithm 
l  Shadow volumes 

–  Be able to describe the algorithm 
–  Stencil buffer, 3-pass algorithm, Z-pass, Z-fail, 
–  Creating quads from the silhouette edges as seen from the light 

source, etc 

l  Pros and cons of  shadow volumes vs shadow maps 
l  Planar reflections – how to do. Why not using 

environment mapping? 
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Ways of thinking about shadows 
l As separate objects (like Peter Pan's 

shadow) This corresponds to planar 
shadows 

l As volumes of space that are dark 
l This corresponds to shadow volumes 

l As places not seen from a light source 
looking at the scene. This corresponds 
to shadow maps 

l Note that we already "have shadows" for 
objects facing away from light 



Tutorial				Shadow	Algorithms	for	Real-time	Rendering	

Shadow	Maps	-	Summary	

Shadow	Map	Algorithm:	

¡  Render	a	z-buffer	from	the	light	source	
�  Represents	geometry	in	light	

¡  Render	from	camera	
�  For	every	fragment:	

¡  Transform(warp)	its	3D-pos	(x,y,z)	
into	shadow	map	(i.e.	light	space)	and	
compare	depth	with	the	stored		
depth	value	in	the	shadow	map	

¡  If	depth	greater->	point	in	shadow	
¡  Else	->	point	in	light	
¡  Use	a	bias	at	the	comparison	

	
Understand	z-fighMng	and	light	leaks	
	 Shadow	Map	(=depth	buffer)	

91	
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Bias	
¡ Need	a	tolerance	threshold	
(depth	bias)	when	comparing	
depths	to	avoid	surface	self	
shadowing	

Shadow	map	sample	

Shadow	map	

Surface	

View	sample	
bias	

92	
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Bias	
¡ Need	a	tolerance	threshold	
(depth	bias)	when	comparing	
depths	to	avoid	surface	self	
shadowing	

Shadow	map	sample	

Shadow	map	

Surface	

View	sample	
bias	

SM-based 
representation

z-fighting

without depth bias

shadow map

with depth bias

light leaking at contact shadows

offset
 SM-based 

representation
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Tutorial				Shadow	Algorithms	for	Real-time	Rendering	

Bias	
¡ Need	a	tolerance	threshold	
(depth	bias)	when	comparing	
depths	to	avoid	surface	self	
shadowing	

Shadow	map	sample	

Shadow	map	

Surface	

View	sample	bias	

SM-based 
representation

z-fighting

without depth bias

shadow map

with depth bias

light leaking at contact shadows

offset
 SM-based 

representation

Surface	that	
should	be	in	
shadow	

94	
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Shadow volumes 
Create shadow quads for all silhouette 

edges (as seen from the light source). 
(The normals are pointing outwards from the shadow 
volume.) 

Then… Edges between one triangle front 
facing the light source and one 
triangle back facing the light source 
are considered silhouette edges. 
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Shadow	Volumes	-	concept	

¡  Perform	counMng	with	the	stencil	buffer	
�  Render	front	facing	shadow	quads	to	the	stencil	buffer	

¡  Inc	stencil	value,	since	those	represents	entering	shadow	volume	
�  Render	back	facing	shadow	quads	to	the	stencil	buffer	

¡  Dec	stencil	value,	since	those	represents	exiMng	shadow	volume	

0	
+2	

+	 +	
-	 -	

• 	No	updaMng	of	z-buffer	
• 	Z-test	is	enabled	as	usual	
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Shadow	Volumes	with	the	Stencil	Buffer	

¡  A	three	pass	process:	
�  1st	pass:	Render	ambient	lighMng	
�  2nd	pass:	

¡  Draw	to	stencil	buffer	only	
–  Turn	off	updaMng	of	z-buffer	and	wriMng	to	color	buffer	but	sMll	
use	standard	depth	test	

–  Set	stencil	operaMon	to		
»  incremen*ng	stencil	buffer	count	for	fron/acing	shadow	
volume	quads,	and	

»  decremen*ng	stencil	buffer	count	for	backfacing	shadow	
volume	quads	

		
�  3rd	pass:	Render	diffuse	and	specular	where	stencil	buffer	is	0.		

97	
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The	Z-fail	Algorithm	
¡  Z-pass	must	offset	the	stencil	buffer	with	the	number	of	
shadow	volumes	that	the	eye	is	inside.	ProblemaMc.	

¡  Count	to	infinity	instead	of	to	the	eye	
�  We	can	choose	any	reference	locaMon	for	the	counMng	
�  A	point	in	light	avoids	any	offset	
�  Infinity	is	always	in	light	–	if	we	cap	the	shadow	volumes	at	
infinity	

		

+2	
0	

Simply	invert	z-test	and	
invert	stencil	inc/dec	

Near	capping	

Far	capping	 98	
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Compared to Z-pass: 

 Invert z-test 

 Invert stencil inc/dec 

I.e., count to infinity instead of from eye. 
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Merging Volumes 
l Edge shared by two polygons facing the 

light creates front and backfacing quad. 

This interior edge makes 
two quads, which cancel out 
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Silhouette Edges 

From the light’s view, caster interior edges 
do not contribute to the shadow volume. 

Finding the silhouette edge gets rid of many 
useless shadow volume polygons. 
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Shadow	Maps	vs	Shadow	Volumes	

Shadow	Maps	 Shadow	Volumes	
�  Good:	shadows	are	sharp.	Handles	omni-

direcMonal	lights.	
�  Bad:	3	passes,	shadow	polygons	must	be	

generated	and	rendered	→	lots	of	
polygons	&	fill	
�  SoluMon:	culling	&	clamping	

�  Good:	Handles	any	rasterizable	geometry,	
constant	cost	regardless	of	complexity,	map	
can	someMmes	be	reused.	Very	fast.	

�  Bad:	Frustum	limited.	Jagged	shadows	if	res	
too	low,	biasing	headaches.	
�  SoluMon:		
�  6	SM	(cube	map),	high	res.,	use	

filtering	(huge	topic)	
102	
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Planar reflections 
Two methods:  
1.  Reflecting the object: 

–  If reflection plane is z=0 (else somewhat more 
complicated – see page 387) 
l  Apply glScalef(1,1,-1); 

–  Backfacing becomes front facing! 
l  i.e., use frontface culling instead of backface culling 

–  Lights should be reflected as well 
 

2. Reflecting the camera in the reflection 
plane 
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Planar reflections 
l Assume plane is z=0 
l Then apply glScalef(1,1,-1); 
l Effect: 

z 



Planar reflections 
l How should you render? 
l  1) the reflective ground plane polygons 

into the stencil buffer 
l  2) the scaled (1,1,-1) model, but mask 

with stencil buffer 
–  Reflect light pos as well 
–  Use front face culling 

l  3) the ground plane (semi-transparent) 
l  4) the unscaled model 10

5 



Continuity 

•  A) Non-continuous 
•  B) C0-continuous 
•  C) G1-continuous 
•  D) C1-continuous 
•  (C2-continuous) 

(a) (b) (c) (d) 

See page 585-587 in 
Real-time Rendering, 
3rd ed. 



Types of Curves 
• The types of curves: 

– Interpolating 
•  Blending polynomials (or cubic parametric polynomials) for 

interpolation of 4 control points (fit curve to 4 control points) 
– Hermite  

•  fit curve to 2 control points + 2 derivatives (tangents) 
– Bezier 

•  2 interpolating control points + 2 intermediate points to define the 
tangents  

– B-spline 
•  To get C2 continuity 

– NURBS 
•  Different weights of the control points and  
•  The control points can be at non-uniform intervalls 

 Goods and bads with these curves. 

12. Curves and Surfaces: 

p0 

p1 

p2 

p3 



Splines and Basis 

• If we examine the cubic B-spline from the 
perspective of each control (data) point, 
each interior point contributes (through the 
blending functions) to four segments 

• We can rewrite p(u) in terms of the data 
points as 

defining the basis functions {Bi(u)} 

puBup ii )()( ∑=

12. Curves and Surfaces: 



B-Splines 

u 

p0 p1 

p2 

p3 

p4 

p5 

p6 p7 

p8 

u=0 8 
u 

1 2 3 4 5 6 7 

These are our control points, p0-
p8, to which we want to 
approximate a curve 

Illustration of how the control points are evenly (uniformly) distributed 
along the parameterisation u of the curve p(u). 

In each point p(u) of the curve, for a given u, the point is defined as a 
weighted sum of the closest  4 surrounding points.  Below are shown the 
weights for each point along u=0→1 

p0 p1 p2 p3 p4 p5 p6 p7 p8 

100% 

09. Curves and Surfaces: 



B-Splines 

p0 p1 p2 p3 p4 

u 

p5 p6 p7 p8 

100% 

The weight function (blend function)  Bpi (u) for a point pi can thus be 
written as a translation of a basis function B(t). Bpi(u) = B(u-i) 

 

B(t): 

t 
0 1 2 -1 -2 

100% 

Blendfunction  B1(u) for  
point p1 

puBup ii )()( ∑=
Our complete B-spline 
curve  p(u) can thus be 
written as: 

SUMMARY 

In each point p(u) of the curve, for a given u, the point is defined as a 
weighted sum of the closest  4 surrounding points.  Below are shown the 
weights for each point along u=0→1 



NURBS 
NURBS is similar to B-Splines except that: 
1.  The control points can have different weights, wi, 

(heigher weight makes the curve go closer to that 
control point) 

2.  The control points do not have to be at uniform 
distances (u=0,1,2,3...) along the parameterisa-
tion u. E.g.: u=0, 0.5, 0.9, 4, 14,… 

NURBS = Non-Uniform Rational B-Splines 
The NURBS-curve is thus defined as: 

 
Division with the sum of the weights, 
to make the combined weights sum 
up to 1, at each position along the 
curve.  Otherwise, a translation of the 
curve is introduced (which is not 
desirable) 

p(u) =
Bi (u)wii=0

n−1
∑ p(i)

Bi (u)wii=0

n−1
∑

12. Curves and Surfaces: 



NURBS 
•  Allowing control points at non-uniform distances 

means that the basis functions Bpi() are being 
streched and non-uniformly located.  

•  E.g.: 

Each curve Bpi() should of course look smooth and  C2 –continuous. 
But it is not so easy to draw smoothly by hand…(The sum of the 
weights are still =1 due to the division in previous slide )  

12. Curves and Surfaces: 

u 
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l  Perspective correct  
interpolation (e.g. for textures) 

l  Taxonomy: 
–  Sort first  
–  sort middle 
–  sort last fragment 
–  sort last image 

l  Bandwidth 
–  Why it is a problem 
–  How to ”solve” it 

l  Be able to sketch the architecture  of a moder graphics card 

Sort-
first 

Sort-
middle 

Sort-last 
fragment 
Sort-last 
image 

Lecture 13: 

Linearly interpolate (ui/wi, vi/wi, 1/wi) in 
screenspace from each triangle vertex i. 
Then at each pixel: 

uip = (u/w)ip / (1/w)ip 
vip = (v/w)ip / (1/w)ip 
 
where ip = screen-space interpolated value 
between the triangle vertices. 



  Department of Computer Engineering

Application 

PCI-E x16 

Vertex 
shader

Vertex 
shader

Vertex 
shader…

Primitive assembly

Clipping

Fragment Generation

Fragment 
shader

Fragment 
shader

Fragment 
shader…

Fragment 
Merge

Fragment 
Merge

Fragment 
Merge

…

Geo 
shader

Geo 
shader

Geo 
shader

Vertex-, Geometry- 
and Fragment 
shaders allocated 
from a pool of 
many processors 
(or ALUs) 


