
Full-time wrapup

Lecture 1: Real-time Rendering
The Graphics Rendering Pipeline

•  Three conceptual stages of the pipeline:
–  Application (executed on the CPU)

•  logic, speed-up techniques, animation, etc…
–  Geometry

•  Executing vertex and geometry shader
•  Vertex shader:

–  lighting computations per triangle vertex
–  Project onto screen (3D to 2D)

–  Rasterizer
•  Executing fragment shader
•  Interpolation of parameters (colors, texcoords etc) over triangle
•  Z-buffering, fragment merge (i.e., blending), stencil tests…

Application Geometry Rasterizer

3D
scene input

Image

output

Tomas Akenine-Mőller © 2003 3

Rendering Pipeline and
Hardware

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Appli-
cation
Stage

CPU

Geometry Stage

Rasterization Stage

GPU

Tomas Akenine-Mőller © 2003 4

Hardware design

light

Geometry

blue

red green

Vertex shader:

• Lighting (colors)

• Screen space positions

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry Stage

Tomas Akenine-Mőller © 2003 5

Hardware design Geometry shader:

• One input primitive

• Many output primitives

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

or

Geometry Stage

Tomas Akenine-Mőller © 2003 6

Hardware design Clips triangles against
the unit cube (i.e.,
”screen borders”)

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Geometry Stage

Tomas Akenine-Mőller © 2003 7

Hardware design Maps window size to
unit cube

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Rasterizer Stage
Geometry stage always operates inside
a unit cube [-1,-1,-1]-[1,1,1]
Next, the rasterization is made against a
draw area corresponding to window
dimensions.

Hardware design

Tomas Akenine-Mőller © 2003 8

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Collects three vertices
into one triangle Rasterizer Stage

Hardware design

Tomas Akenine-Mőller © 2003 9

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Creates the fragments/
pixels for the triangle Rasterizer Stage

blue

red green
Rasterizer

Hardware design

Tomas Akenine-Mőller © 2003 10

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Pixel Shader:
Compute color
using:
• Textures
• Interpolated data
(e.g. Colors +
normals) from
vertex shader

Rasterizer Stage

Hardware design

Tomas Akenine-Mőller © 2003 11

HARDWARE

Vertex
shader

Pixel
shader

Display

Geometry
shader Merger

Frame buffer:
•  Color buffers

•  Depth buffer

•  Stencil buffer

The merge units update
the frame buffer with the
pixel’s color

Rasterizer Stage

z-Buffer Algorithm

• Use a buffer called the z or depth buffer to store
the depth of the closest object at each pixel found
so far

• As we render each polygon, compare the depth
of each pixel to depth in z buffer

• If less, place shade of pixel in color buffer and
update z buffer

Also know double buffering!

Screen Tearing

Painter’s Algorithm
• Render polygons a back to front order so that polygons

behind others are simply painted over

B behind A as seen by viewer Fill B then A

• Requires ordering of polygons
first

– O(n log n) calculation for ordering
– Not every polygon is either in
front or behind all other polygons

I.e., : Sort all triangles and
render them back-to-front.

GEOMETRY – transformation summary
Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection
image space

clip map to screen

Ulf Assarsson© 2007

v
e
r
t
e
x

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transform

Modelview

Modelview

Projection

l
l
l

object
space

eye
space

clip
space

(normalized
device coords)

window
coords

l  other calculations here
–  Color / normal per vertex
–  (backface culling)
–  clipping

Transformation
Pipeline

OpenGL | Geometry stage | done on GPU

Lecture 2:

camera

Model space
World space

View space

Model to World
Matrix

World to
View
Matrix

ModelViewMtx = Model to
View Matrix

Ulf Assarsson © 2004

Lecture 2: Transforms

l Homogeneous notation
l Projections
l Quaternions

–  Know what they are good for. Not knowing the
mathematical rules.

€

Use : N= M−1()
T

 instead of M

l  Scaling, rotations, translations
l  Cannot use same matrix to transform normals

l  …represents a rotation of 2φ radians 2φ r
around axis uq of point p

)cos,(sinˆ φφ quq =

1ˆˆˆ −qpq

(M-1)T=M
if rigid-
body
transform

Tomas Akenine-Mőller © 2002

Homogeneous notation
l A point:
l Translation becomes:

l A vector (direction):
l Translation of vector:

1

1
)(

1000
100
010
001

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

+

+

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

zz

yy

xx

z

y

x

z

y

x

tp
tp
tp

p
p
p

t
t
t

!! "!! #$
tT

()Tzyx ppp 1=p

()Tzyx ddd 0=d
dTd =

Translation part

Rotation
part

02. Vectors and Transforms

Change of Frames
• How to get the Mmodel-to-world matrix:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000

M world-to-model
zzzz

yyyy

xxxx

ocba
ocba
ocba

(0,5,0,1)

E.g.: pworld = Mm→w pmodel = Mm→w (0,5,0,1)T = 5 b (+ o)

b

x

y

z

c

a

o

world space

model space

(Both coordinate systems are right-handed)

P=

0
5
0
1

!

"

#
#
#
#

$

%

&
&
&
&

The basis vectors a,b,c
are expressed in the
world coordinate system

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000

M world-to-model
zzzz

yyyy

xxxx

ocba
ocba
ocba

b

x

y

z

a

c

o

world space

model space

Change of Frames
pmodelspace =(px,py,pz)

Let’s initially disregard the translation o. I.e., o=[0,0,0]
X: One step along a results in ax steps along world space axis x.
 One step along b results in bx steps along world space axis x.
 One step along c results in cx steps along world space axis x.

The x-coord for p in world space (instead of modelspace) is thus [ax bx cx]p.
The y-coord for p in world space is thus [ay by cy]p.
The z-coord for p in world space is thus [az bz cz]p.

With the translation o we get pworldspace= Mmodel-to-world pmodelspace

Same example, just explained differently:

Tomas Akenine-Mőller © 2002

Projections
l Orthogonal (parallel) and Perspective

02. Vectors and Transforms

Tomas Akenine-Mőller © 2002

Orthogonal projection
l Simple, just skip one coordinate

–  Say, we’re looking along the z-axis
–  Then drop z, and render

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⇒

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1
0

1

1000
0000
0010
0001

y

x

z

y

x

orthoortho

p
p

p
p
p

MM

z z

02. Vectors and Transforms

DDA Algorithm

• Digital Differential Analyzer
– DDA was a mechanical device for numerical
solution of differential equations

– Line y=kx+ m satisfies differential equation
 dy/dx = k = Δy/Δx = y2-y1/x2-x1

• Along scan line Δx = 1
y=y1;
For(x=x1; x<=x2,ix++) {
 write_pixel(x, round(y), line_color)
 y+=k;
}

02. Rasterization, Depth Sorting and Culling:

Using Symmetry

• Use for 1 ≥ k ≥ 0
• For k > 1, swap role of x and y

– For each y, plot closest x

02. Rasterization, Depth Sorting and Culling:

Otherwise we get
problem for steep
slopes

•  The problem with DDA is that it uses floats
which was slow in the old days

•  Bresenhams algorithm only uses integers

You do not need to know Bresenham’s algorithm
by heart. It is enough that you understand it if
you see it.

Very Important!

02. Rasterization, Depth Sorting and Culling:

Ulf Assarsson © 2004

Lighting
i=iamb+idiff+ispec+iemission

+ +

=

Know how to compute components.
Also, Blinns and Phongs highlight model

Lecture 3: Shading

Lighting

Material:
• Ambient (r,g,b,a)

• Diffuse (r,g,b,a)

• Specular (r,g,b,a)

• Emission (r,g,b,a) =”självlysande färg”

Light:
• Ambient (r,g,b,a)

• Diffuse (r,g,b,a)

• Specular (r,g,b,a)

 DIFFUSE Base color
SPECULAR Highlight Color
AMBIENT Low-light Color
EMISSION Glow Color
SHININESS Surface Smoothness

Tomas Akenine-Mőller © 2002

Lighting
i=iamb+idiff+ispec+iemission

03. Shading:

I.e.:
i=iamb+idiff+ispec+iemission

ambambamb smi ⊗=

diffdiffdiff smlni ⊗⋅=)(

€

ispec =max(0,(h⋅ n))mshimspec ⊗ sspec

Phong’s reflection model:

Blinn’s reflection model:

emissionemission mi =€

ispec =max(0,(r⋅ v))mshimspec ⊗sspec
€

((n⋅ l) < 0)⇒ ispec /diff = 0

Tomas Akenine-Mőller © 2002

Diffuse component : idiff

l  i=iamb+idiff+ispec+iemission

l Diffuse is Lambert’s law: φcos=⋅= lndiffi

l Photons are scattered equally in all
directions

diffdiffdiff smlni ⊗⋅=)(

03. Shading:

(Note that n and l need to be
normalized)

Tomas Akenine-Mőller © 2002

Lighting
Specular component : ispec

l Diffuse is dull (left)
l Specular: simulates a highlight

03. Shading:

Tomas Akenine-Mőller © 2002

Specular component: Phong
l Phong specular highlight model
l Reflect l around n:

l)n2(nlr ⋅+−=

n

l r

-l
nln)(⋅

ln ⋅

shishi mm
speci)(cos)(ρ=⋅= vr

€

ispec =max(0,(r⋅ v))mshimspec ⊗sspec
l Next: Blinns highlight formula: (n.h)m

03. Shading:

(n needs to be
normalized)

Halfway Vector

Blinn proposed replacing v·r by n·h where
h = (l+v)/|l + v|
(l+v)/2 is halfway between l and v
If n, l, and v are coplanar:
   ψ = φ/2

Must then adjust exponent
so that (n·h)e’ ≈ (r·v)e

(e’ ≈ 4e)

03. Shading:

specspec
m

spec
shi smnhi ⊗⋅=))(,0max(

Tomas Akenine-Mőller © 2002

Shading
l Three common types of shading:

–  Flat, Goraud, and Phong
l  In standard Gouraud shading the lighting is computed per triangle vertex

and for each pixel, the color is interpolated from the colors at the
vertices.

l  In Phong Shading the lighting is not computed per vertex. Instead the
normal is interpolated per pixel from the normals defined at the vertices
and full lighting is computed per pixel using this normal. This is of course
more expensive but looks better.

03. Shading:

Flat Gouraud Phong

Tomas Akenine-Mőller © 2002

l Color of fog: color of surface: fc sc

€

c p = fcs + (1− f)c f f ∈[0,1]
l  How to compute f ?
l  E.g., linearly:

startend

pend

zz
zz

f
−

−
=

Tomas Akenine-Mőller © 2002

Transparency and alpha
l Transparency

–  Very simple in real-time contexts

l The tool: alpha blending (mix two colors)
l Alpha (α) is another component in the

frame buffer, or on triangle
–  Represents the opacity
–  1.0 is totally opaque
–  0.0 is totally transparent

l The over operator:

dso ccc)1(αα −+=
Rendered object

03. Shading:

(Blending)

Tomas Akenine-Mőller © 2002

Transparency
l Need to sort the transparent objects

–  First, render all non-transparent triangles as
usual.

–  Then, sort all transparent triangles and
render back-to-front with blending enabled.
(and using standard depth test)
l  The reason is to avoid problems with the depth test

and because the blending operation (i.e., over
operator) is order dependent.

03. Shading:

Gamma correction
l  (Standard is 2.2)
1.  Screen has non-linear color intensity

1.  We often want linear output (e.g. antialiasing)

2.  Also happens to give more efficient color space when
compressing intensity from 32-bit floats to 8-bits.
Thus, often desired when storing textures.

Tomas Akenine-Mőller © 2002

Gamma of 2.2

better distribution for
humans

Truth

On most displays (those with gamma of about 2.2), one can observe that the linear
intensity output (bottom) has a large jump in perceived brightness between the intensity
values 0.0 and 0.1, while the steps at the higher end of the scale are hardly perceptible.
A linear input that has a nonlinearly-increasing intensity (upper), will show much more
even steps in perceived brightness.

)/1(γ
icc =

Ulf Assarsson © 2004

Leture 3.2: Sampling, filtrering, and
Antialiasing

l When does it occur?
–  In 1) pixels, 2) time, 3) texturing

l Supersampling schemes
l  Jittered sampling

–  Why is it good?

04. Texturing

Most important:
•  Texturing

–  Mipmapping: bi/tri-linear filtering, anisotropic filtering
•  Environment mapping

–  Cube mapping
•  Bump mapping
•  3D-textures,
•  Particle systems
•  Sprites and billboards

Ulf Assarsson © 2004

FILTERING:
l  For magnification: Nearest or Linear (box vs Tent

filter)

l  For minification: nearest, linear and…
–  Bilinear – using mipmapping
–  Trilinear – using mipmapping
–  Anisotropic – up to 16 mipmap lookups along line of anisotropy

Filtering

Ulf Assarsson © 2004

Interpolation

Minification

Magnification

Ulf Assarsson © 2004

Bilinear filtering using Mipmapping

Tomas Akenine-Mőller © 2002

Mipmapping
l  Image pyramid
l Half width and

height when going
upwards

l Average over 4 ”parent texels” to form
”child texel”

l Depending on amount of minification,
determine which image to fetch from

l Compute d first, gives two images
–  Bilinear interpolation in each

u

v

d

Tomas Akenine-Mőller © 2002

Mipmapping
l  Interpolate between those bilinear values

–  Gives trilinear interpolation

l Constant time filtering: 8 texel accesses

v
u

d

Level n+1

Level n

(u0,v0,d0)

Tomas Akenine-Mőller © 2002

Mipmapping:
Memory requirements
l Not twice the number of bytes…!

1/4
1/16

1/1

1/64

Modified by Ulf Assarsson 2004
l Rather 33% more – not that much

Anisotropic texture filtering

See page
168-169

Tomas Akenine-Mőller © 2002

Environment mapping

l  Assumes the environment is infinitely far away
l  Sphere mapping, or Cube mapping
l  Cube mapping is the norm nowadays

Modified by Ulf Assarsson 2004

Tomas Akenine-Mőller © 2002

x

y

z

Cube mapping

l  Simple math: compute reflection vector, r
l  Largest abs-value of component, determines which cube face.

–  Example: r=(5,-1,2) gives POS_X face
l  Divide r by abs(5) gives (u,v)=(-1/5,2/5)
l  Also remap from [-1,1] to [0,1] by (u,v) = ((u,v)+vec2(1,1))*0.5;
l  Your hardware does all the work for you. You just have to

compute the reflection vector.

n eye

Tomas Akenine-Mőller © 2002

Bump mapping
l  by Blinn in 1978
l  Inexpensive way of simulating wrinkles

and bumps on geometry
–  Expensive to model these geometrically

l  Instead let a texture modify the normal at
each pixel, and then use this normal to
compute lighting per pixel

geometry Bump map
Stores heights: can derive normals

+
Bump mapped geometry

=

Tomas Akenine-Mőller © 2002

3D Textures
l  3D textures:

–  Texture filtering is no longer trilinear
–  Rather quadlinear (linear interpolation 4 times)
–  Enables new possibilities

l  Can store light in a room, for example

Sprites
GLbyte M[64]=
{ 127,0,0,127, 127,0,0,127,

127,0,0,127, 127,0,0,127,
0,127,0,0, 0,127,0,127,
0,127,0,127, 0,127,0,0,
0,0,127,0, 0,0,127,127,
0,0,127,127, 0,0,127,0,
127,127,0,0, 127,127,0,127,
127,127,0,127, 127,127,0,0};

void display(void) {
glClearColor(0.0,1.0,1.0,1.0);
glClear(GL_COLOR_BUFFER_BIT);
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA);
glRasterPos2d(xpos1,ypos1);
glPixelZoom(8.0,8.0);
glDrawPixels(width,height,

GL_RGBA, GL_BYTE, M);

glPixelZoom(1.0,1.0);
glutSwapBuffers();

}

Sprites (=älvor) was a technique
on older home computers, e.g.
VIC64. As opposed to billboards
sprites does not use the frame
buffer. They are rasterized
directly to the screen using a
special chip. (A special bit-
register also marked colliding
sprites.)

05. Texturing:
Just know what “sprites” is
and that they are very
similar to a billboard

Billboards
•  2D images used

in 3D
environments
– Common for

trees,
explosions,
clouds, lens
flares

•  Rotate them towards viewer
–  Either by rotation matrix or
–  by orthographic projection

Billboards

•  Fix correct transparency by
blending AND using alpha-
test
–  In fragment shader:

if (color.a < 0.1) discard;

Billboards
 Color Buffer Depth Buffer

With
blending

With
alpha test

If alpha value in texture
is lower than this
threshold value, the pixel
is not rendered to. I.e.,
neither frame buffer nor
z-buffer is updated,
which is what we want to
achieve.
E.g. here: so that objects behind is visible through the hole

(Also called Impostors)

axial billboarding
The rotation axis is fixed and
disregarding the view position

n

Ulf Assarsson © 2004

Lecture 5: OpenGL
l How to use OpenGL (or DirectX)

–  Will not ask about syntax. Know how to use.
l  I.e. functionality

–  E.g. how to achieve
l  Blending and transparency
l  Fog – how would you implement in a fragment shader?

–  pseudo code is enough
l  Specify a material, a triangle, how to translate or rotate an

object.
l  Triangle – vertex order and facing

Ulf Assarsson © 2003 58

l  Understand at pseudo code level!

Reflections with environment
mapping

VERTEX SHADER
in vec3 vertex;
in vec3 normalIn; // The normal
out vec3 normal;
out vec3 eyeVector;
uniform mat4 normalMatrix;
uniform mat4 modelViewMatrix;
uniform mat4 modelViewProjectionMatrix;

void main()
{
 gl_Position = modelViewProjectionMatrix *vec4(vertex,1);
 normal = (normalMatrix * vec4(normalIn,0.0)).xyz;
 eyeVector = (modelViewMatrix * vec4(vertex, 1)).xyz;
}

FRAGMENT SHADER
in vec3 normal;
in vec3 eyeVector;
uniform samplerCube tex1;
out vec4 fragmentColor;

void main()
{
 vec3 reflectionVector = normalize(reflect(normalize(eyeVector),

 normalize(normal)));
 fragmentColor = texture(tex1, reflectionVector);
}

59

Buffers
l  Frame buffer

–  Back/front/left/right – glDrawBuffers()
–  Offscreen buffers (e.g., framebuffer objects, auxiliary buffers)

Frame buffers can consist of:
l  Color buffer - rgb(a)
l  Depth buffer (z-buffer)

–  For correct depth sorting
–  Instead of BSP-algorithm or painters algorithm…

l  Stencil buffer
–  E.g., for shadow volumes or only render to frame buffer where

stencil = certain value (e.g., for masking).

Ulf Assarsson © 2004

Lecture 6: Intersection Tests
l  4 techniques to compute intersections:

–  Analytically
–  Geometrically – e.g. ray vs box (3 slabs)
–  SAT (Separating Axis Theorem) for convex polyhedra

Test:
1.  axes orthogonal to face of A,
2.  axes orthogonal to face of B
3.  All different axes formed by crossprod of one edge of A and one of B

–  Dynamic tests – know what it means.
l  E.g., describe an algorithm for intersection

between a ray and a
–  Polygon, triangle, sphere and plane.

l  Know equations for ray, sphere, cylinder,
plane, triangle

Tomas Akenine-Mőller © 2003

Analytical:
Ray/plane intersection

l  Ray: r(t)=o+td
l  Plane formula: n•p + d = 0

l  Replace p by r(t) and solve for t:
 n•(o+td) + d = 0
 n•o+tn•d + d = 0
 t = (-d -n•o) / (n•d)

o d n

Here, one scalar equation
and one unknown -> just
solve for t.

Tomas Akenine-Mőller © 2003

Analytical:
Ray/sphere test
l  Sphere center: c, and radius r
l  Ray: r(t)=o+td
l  Sphere formula: ||p-c||=r
l  Replace p by r(t): ||r(t)-c||=r

0))(())((2 =−−⋅− rtt crcr

1|||| 0)()())((2 22 ==−−⋅−+⋅−+ dcοcοdcο rtt

0)()(2 =−−+⋅−+ rtt cdocdo

0)()())((2)(22 =−−⋅−+⋅−+⋅ rtt cοcοdcοdd

o

d

c
r

This is a standard quadratic equation. Solve for t.

Tomas Akenine-Mőller © 2003

Geometrical:
Ray/Box Intersection (2)
l  Intersect the 2 planes of each slab with

the ray

min
xt

max
xt

min
yt

max
yt

l Keep max of tmin and min of tmax

l  If tmin < tmax then we got an intersection
l Special case when ray parallell to slab

Point/Plane
l  Insert a point x into plane equation:

0: :Plane =+⋅ dpnπ

?)(=+⋅= df xnx
plane on the s'for 0)(xxnx =+⋅= df

 sideother on the s'for 0)(xxnx >+⋅= dfPositive
half space

plane theof side oneon s'for 0)(xxnx <+⋅= dfNegative
half space

Tomas Akenine-Mőller © 2003

Sphere/Plane
AABB/Plane
l Sphere: compute

0: :Plane =+⋅ dpnπ
r :Sphere c

maxmin :Box bb
df +⋅= cnc)(

l  f (c) is the signed distance (n normalized)

l Box: insert all 8 corners
l  If all f ’s have the same sign, then all

points are on the same side, and no
collision

l  abs(f (c)) > r no collision
l  abs(f (c)) = r sphere touches the plane
l  abs(f (c)) < r sphere intersects plane

n

AABB/plane
l  The smart way (shown in 2D)
l  Find the two vertices that have the most

positive and most negative value when tested
againt the plane

OBB almost as easy. Just first project
n on OBB’s axes – see p: 757

Need only test
the red points

0: :Plane =+⋅ dpnπ
r :Sphere c

maxmin :Box bb

vneg

v pos

v posx = (nx > 0)?bmaxx :bminx
v posy = (ny > 0)?bmaxy :bminy
v posz = (nz > 0)?bmax z :bminz
vnegx = (nx < 0)?bmaxx :bminx
vnegy = (ny < 0)?bmaxy :bminy
vnegz = (nz < 0)?bmax z :bminz

Tomas Akenine-Mőller © 2003

Another analytical example: Ray/
Triangle in detail

l Ray: r(t)=o+td
l Triangle vertices: v0, v1, v2
l A point in the triangle:
l  t(u,v)=v0+u(v1 - v0) +v(v2 - v0)=

=(1-u-v)v0+uv1+vv2 [u,v>=0, u+v<=1]

l Set t(u,v)=r(t), and solve!

v2

v1

v0

v1 -v0

v2 -v0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−

|

|

|||

|||

00201 vovvvvd
v
u
t

Tomas Akenine-Mőller © 2003

Ray/Polygon: very briefly
l  Intersect ray with polygon plane
l Project from 3D to 2D
l How?
l Find max(|nx|,|ny|,|nz|)
l Skip that coordinate!
l Then, count crossing in 2D

Tomas Akenine-Mőller © 2003

View frustum testing example

l  Algorithm:
–  if sphere is outside any of the 6 frustum planes -> report ”outside”.
–  Else report intersect.

l  Not exact test, but not incorrect, i.e.,
–  A sphere that is reported to be inside, can be outside
–  Not vice versa, so test is conservative

outside
frustum

intersecting
frustum

Ulf Assarsson © 2004

Lecture 7.1: Spatial Data Structures
and Speed-Up Techniques

l  Speed-up techniques
–  Culling

l  Backface
l  View frustum (hierarchical)
l  Portal
l  Occlusion Culling
l  Detail

–  Levels-of-detail:

l How to construct and use the spatial data
structures

l  BVH, BSP-trees (polygon aligned + axis aligned)

Tomas Akenine-Mőller © 2002

Axis Aligned Bounding Box
Hierarchy - an example
l Assume we click on screen, and want to

find which object we clicked on

click!
1)  Test the root first
2)  Descend recursively as needed
3)  Terminate traversal when possible
In general: get O(log n) instead of O(n)

Tomas Akenine-Mőller © 2002

How to create a BVH?
Example: using AABBs
l  Find minimal box, then split along longest axis

x is longest Find minimal
boxes

Split along
longest axis

Find minimal
boxes

Called TOP-DOWN method
Similar for other BVs

AABB = Axis Aligned
 Bounding Box

BVH = Bounding Volume
 Hierarchy

Axis-aligned BSP tree
Rough sorting
l  Test the planes, recursively from root, against the point of view. For each

traversed node:
–  If node is leaf, draw the node’s geometry
–  else

l  Continue traversal on the ”hither” side with respect to the eye to sort front to back
l  Then, continue on the farther side.

eye

0

1a

A B

1b

C 2

D E

1

1a 1b

2

0

2 3
4 5

l  Works in the same way for polygon-
aligned BSP trees --- but that gives
exact sorting

Polygon-aligned BSP tree
l Allows exact sorting
l Very similar to axis-aligned BSP tree

–  But the splitting plane are now located in the
planes of the triangles

Know how to build it
and how to traverse
back-to-front or
front-to-back with
respect to the eye
position (here: v)

Drawing Back-to-Front {
recurse on farther side of P;
Draw P;
Recurse on hither side of P;

}// farther/hither is with respect to eye pos.

Tomas Akenine-Mőller © 2002

Scene graphs
l  BVH is the data structure that is used most often

–  Simple to understand
–  Simple code

l  However, BVH stores just geometry
–  Rendering is more than geometry

l  The scene graph is an extended BVH with:
–  Lights
–  Materials
–  Transforms
–  several

connections
to a node

–  And more

A Scene Graph is a hierarchical scene description – more
typically a logical hierarchy (than e.g. spatial)

Lecture 7.2: Collision Detection
l  3 types of algorithms:

–  With rays
l  Fast but not exact

–  With BVH
l  Slower but exact
l  You should be able to write pseudo code for BVH/BVH test

for coll det between two objects.

–  For many many objects.
l  why? Course pruning of ”obviously” non-colliding objects
l  Sweep-and-prune

Ulf Assarsson © 2004

Lecture 8: Ray tracing
l  Adaptive Super Sampling
l  Jittering
l  How to stop ray tracing recursion?

l  Speedup techniques
–  Spatial data structures

l  Optimizations for BVHs: skippointer tree
l  Ray BVH-traversal
l  (You do not need to learn the ray traversal

 algorithms for Grids nor AA-BSP trees)

–  Shadow cache
l  Material (Fresnel: metall, dielectrics)
l  Constructive Solid Geometry – how to implement

A
B
D
E
F
C

A

B

D E F

C

Adaptive Supersampling
Pseudo code:
Color AdaptiveSuperSampling() {

–  Make sure all 5 samples exist
l  (Shoot new rays along diagonal if necessary)

–  Color col = black;
–  For each quad i

l  If the colors of the 2 samples are fairly similar
–  col += (1/4)*(average of the two colors)

l  Else
–  col +=(1/4)* adaptiveSuperSampling(quad[i])

–  return col;
}

Tomas Akenine-Mőller © 2002

Tomas Akenine-Mőller © 2002

Summary of the Ray tracing-
algorithm:

l  main()-calls trace() for each pixel
l  trace(): should return color of closest hit point along ray.

1.  calls findClosestIntersection()
2.  If any object intersected → call shade().

l  Shade(): should compute color at hit point
1.  For each light source, shoot shadow ray to determine if light source is visible

If not in shadow, compute diffuse + specular contribution.
2.  Compute ambient contribution
3.  Call trace() recursively for the reflection- and refraction ray.

trace()

shade()

Image plane
light

trace()

shade()

trace()

Point is in shadow

07 + 08. Ray Tracing

Data structures
l Octree

l Kd tree

l Grids

l Bounding box hierarchies
Tomas Akenine-Mőller © 2002

Including mail
boxing Hierarchical

grid

Recursive
grid

Kd-tree = Axis-Aligned BSP tree with
fixed recursive split plane order (e.g.
x,y,z,x,y,z…)

Ulf Assarsson © 2004

Lecture 10 – Global Illumination
l  Global illumination:

–  Why is not standard ray tracing enough?
–  rendering eq., BRDFs
–  Monte Carlo Ray Tracing
–  Path tracing
–  Photon mapping

Ray tracing

Global
Illumination

')')(',()',,(ωωωωω dLfLL ireo nxx ⋅+= ∫
Ω

Lecture 10: What you need to know
–  The rendering equation

l  Be able to explain all its components

–  Path tracing
l  Why it is good, compared to naive monte-carlo sampling
l  The overall algorithm (on a high level as in these slides).

–  Photon Mapping
l  The overall algorithm. See the summary slide on:

–  Creating Photon Maps…
–  Ray trace from eye…
–  Growing spheres…

–  Final Gather
l  Why it is good. How it works:

–  At the first diffuse hit, instead of using global map directly, sample indirect
slow varying light around p by sampling the hemisphere with ~1000 rays
and use the two photon maps where those rays hit a diffuse surface.

–  Bidirectional Path Tracing, Metropolis Light Transport
l  Just their names. Don’t need to know the algorithms.

Monte Carlo Ray Tracing (naively)

l Sample indirect illumination by shooting
sample rays over the hemisphere, at
each hit.
–  At some recursion depth, stop and compute

standard local lighting (i.e., without indirect
illumination)

diffuse floor and wall

eye

Ulf Assarsson© 2007

Monte Carlo Ray Tracing (naively)
l This gives a ray tree with most rays at

the bottom level. This is bad since these
rays have the lowest influence on the
pixel color.

Ulf Assarsson© 2007

PathTracing
– a smarter Monte-Carlo ray-tracing method
l  Path Tracing instead only traces one of the

possible ray paths at a time. This is done by
randomly selecting only one sample direction
at a bounce. Hundreds of paths per pixel are
traced.

Ulf Assarsson© 2007 Equally number of rays are traced at each level

Path Tracing – indirect + direct
illumination

l  Shoot many paths per pixel (the image just shows one
light path).

–  At each intersection,
l  Shoot one shadow ray per light source

–  at random position on light, for area/volumetric light sources
l  and randomly select one new ray direction.

diffuse floor and wall

eye

Ulf Assarsson© 2007

light light

Photon Mapping
l  Creating Photon Maps:

–  Trace photons (~100K-1M) from light source. Store them in kd-tree when they hit diffuse
surface. Then, use russian roulette to decide if the photon should be absorbed or
specularly or diffusively reflected. Create both global map and caustics map. For the
Caustics map, we send more of the photons towards reflective/refractive objects.

l  Ray trace from eye:
–  As usual: I.e., shooting primary rays and recursively shooting reflection/refraction rays, and

at each intersection point p, compute direct illumination (shadow rays + shading).
–  Also grow sphere around each p in caustics map to get caustics contribution and in global

map to get slow-varying indirect illumination.
–  If final gather is used: At the first diffuse hit, instead of using global map directly, sample

indirect slow varying light around p by sampling the hemisphere with ~100 – 1000 rays and
use the two photon maps where those rays hit a surface.

l  Growing sphere:
–  Uses the kd-tree to expand a sphere around p until a fixed amount (e.g. 50) photons are

inside the sphere. The radius is a measure of the intensity of indirect light at p. The BRDF
at p could also be used to get a more accurate color and intensity value.

Ulf Assarsson© 2007

A modification for indirect
Illumination – Final Gather

l  Too noicy to use the global map for direct visualization
l  Remember: eye rays are recursively traced (via reflections/

refractions) until a diffuse hit, p. There, we want to estimate slow-
varying indirect illumination.

–  Instead of growing sphere in global map at p, Final Gather shoots 100-1000 indirect rays
from p and grows sphere in the global map and also caustics map, where each of those
rays end at a diffuse surface.

diffuse floor and wall

eye

Ulf Assarsson© 2007

Ulf Assarsson © 2004

Lecture 11: Shadows + Reflection
l  Point light / Area light
l  Three ways of thinking about shadows

–  The basis for different algorithms.
l  Shadow mapping

–  Be able to describe the algorithm
l  Shadow volumes

–  Be able to describe the algorithm
–  Stencil buffer, 3-pass algorithm, Z-pass, Z-fail,
–  Creating quads from the silhouette edges as seen from the light

source, etc

l  Pros and cons of shadow volumes vs shadow maps
l  Planar reflections – how to do. Why not using

environment mapping?

Tomas Akenine-Mőller © 2002

Ways of thinking about shadows
l As separate objects (like Peter Pan's

shadow) This corresponds to planar
shadows

l As volumes of space that are dark
l This corresponds to shadow volumes

l As places not seen from a light source
looking at the scene. This corresponds
to shadow maps

l Note that we already "have shadows" for
objects facing away from light

Tutorial				Shadow	Algorithms	for	Real-time	Rendering	

Shadow	Maps	-	Summary	

Shadow	Map	Algorithm:	

¡  Render	a	z-buffer	from	the	light	source	
�  Represents	geometry	in	light	

¡  Render	from	camera	
�  For	every	fragment:	

¡  Transform(warp)	its	3D-pos	(x,y,z)	
into	shadow	map	(i.e.	light	space)	and	
compare	depth	with	the	stored		
depth	value	in	the	shadow	map	

¡  If	depth	greater->	point	in	shadow	
¡  Else	->	point	in	light	
¡  Use	a	bias	at	the	comparison	

	
Understand	z-fighMng	and	light	leaks	
	 Shadow	Map	(=depth	buffer)	

91	

Tutorial				Shadow	Algorithms	for	Real-time	Rendering	

Bias	
¡ Need	a	tolerance	threshold	
(depth	bias)	when	comparing	
depths	to	avoid	surface	self	
shadowing	

Shadow	map	sample	

Shadow	map	

Surface	

View	sample	
bias	

92	

Tutorial				Shadow	Algorithms	for	Real-time	Rendering	

Bias	
¡ Need	a	tolerance	threshold	
(depth	bias)	when	comparing	
depths	to	avoid	surface	self	
shadowing	

Shadow	map	sample	

Shadow	map	

Surface	

View	sample	
bias	

SM-based
representation

z-fighting

without depth bias

shadow map

with depth bias

light leaking at contact shadows

offset
 SM-based

representation

93	

Tutorial				Shadow	Algorithms	for	Real-time	Rendering	

Bias	
¡ Need	a	tolerance	threshold	
(depth	bias)	when	comparing	
depths	to	avoid	surface	self	
shadowing	

Shadow	map	sample	

Shadow	map	

Surface	

View	sample	bias	

SM-based
representation

z-fighting

without depth bias

shadow map

with depth bias

light leaking at contact shadows

offset
 SM-based

representation

Surface	that	
should	be	in	
shadow	

94	

Tomas Akenine-Mőller © 2002

Shadow volumes
Create shadow quads for all silhouette

edges (as seen from the light source).
(The normals are pointing outwards from the shadow
volume.)

Then… Edges between one triangle front
facing the light source and one
triangle back facing the light source
are considered silhouette edges.

Tutorial				Shadow	Algorithms	for	Real-time	Rendering	

Shadow	Volumes	-	concept	

¡  Perform	counMng	with	the	stencil	buffer	
�  Render	front	facing	shadow	quads	to	the	stencil	buffer	

¡  Inc	stencil	value,	since	those	represents	entering	shadow	volume	
�  Render	back	facing	shadow	quads	to	the	stencil	buffer	

¡  Dec	stencil	value,	since	those	represents	exiMng	shadow	volume	

0	
+2	

+	 +	
-	 -	

• 	No	updaMng	of	z-buffer	
• 	Z-test	is	enabled	as	usual	
	

96	

Tutorial				Shadow	Algorithms	for	Real-time	Rendering	

Shadow	Volumes	with	the	Stencil	Buffer	

¡  A	three	pass	process:	
�  1st	pass:	Render	ambient	lighMng	
�  2nd	pass:	

¡  Draw	to	stencil	buffer	only	
–  Turn	off	updaMng	of	z-buffer	and	wriMng	to	color	buffer	but	sMll	
use	standard	depth	test	

–  Set	stencil	operaMon	to		
»  incremen*ng	stencil	buffer	count	for	fron/acing	shadow	
volume	quads,	and	

»  decremen*ng	stencil	buffer	count	for	backfacing	shadow	
volume	quads	

		
�  3rd	pass:	Render	diffuse	and	specular	where	stencil	buffer	is	0.		

97	

Tutorial				Shadow	Algorithms	for	Real-time	Rendering	

The	Z-fail	Algorithm	
¡  Z-pass	must	offset	the	stencil	buffer	with	the	number	of	
shadow	volumes	that	the	eye	is	inside.	ProblemaMc.	

¡  Count	to	infinity	instead	of	to	the	eye	
�  We	can	choose	any	reference	locaMon	for	the	counMng	
�  A	point	in	light	avoids	any	offset	
�  Infinity	is	always	in	light	–	if	we	cap	the	shadow	volumes	at	
infinity	

		

+2	
0	

Simply	invert	z-test	and	
invert	stencil	inc/dec	

Near	capping	

Far	capping	 98	

Tomas Akenine-Mőller © 2002

Compared to Z-pass:

 Invert z-test

 Invert stencil inc/dec

I.e., count to infinity instead of from eye.

Tomas Akenine-Mőller © 2002

Merging Volumes
l Edge shared by two polygons facing the

light creates front and backfacing quad.

This interior edge makes
two quads, which cancel out

Tomas Akenine-Mőller © 2002

Silhouette Edges

From the light’s view, caster interior edges
do not contribute to the shadow volume.

Finding the silhouette edge gets rid of many
useless shadow volume polygons.

Tutorial				Shadow	Algorithms	for	Real-time	Rendering	

Shadow	Maps	vs	Shadow	Volumes	

Shadow	Maps	 Shadow	Volumes	
�  Good:	shadows	are	sharp.	Handles	omni-

direcMonal	lights.	
�  Bad:	3	passes,	shadow	polygons	must	be	

generated	and	rendered	→	lots	of	
polygons	&	fill	
�  SoluMon:	culling	&	clamping	

�  Good:	Handles	any	rasterizable	geometry,	
constant	cost	regardless	of	complexity,	map	
can	someMmes	be	reused.	Very	fast.	

�  Bad:	Frustum	limited.	Jagged	shadows	if	res	
too	low,	biasing	headaches.	
�  SoluMon:		
�  6	SM	(cube	map),	high	res.,	use	

filtering	(huge	topic)	
102	

Tomas Akenine-Mőller © 2002

Planar reflections
Two methods:
1.  Reflecting the object:

–  If reflection plane is z=0 (else somewhat more
complicated – see page 387)
l  Apply glScalef(1,1,-1);

–  Backfacing becomes front facing!
l  i.e., use frontface culling instead of backface culling

–  Lights should be reflected as well

2. Reflecting the camera in the reflection
plane

Tomas Akenine-Mőller © 2002

Planar reflections
l Assume plane is z=0
l Then apply glScalef(1,1,-1);
l Effect:

z

Planar reflections
l How should you render?
l  1) the reflective ground plane polygons

into the stencil buffer
l  2) the scaled (1,1,-1) model, but mask

with stencil buffer
–  Reflect light pos as well
–  Use front face culling

l  3) the ground plane (semi-transparent)
l  4) the unscaled model 10

5

Continuity

•  A) Non-continuous
•  B) C0-continuous
•  C) G1-continuous
•  D) C1-continuous
•  (C2-continuous)

(a) (b) (c) (d)

See page 585-587 in
Real-time Rendering,
3rd ed.

Types of Curves
• The types of curves:

– Interpolating
•  Blending polynomials (or cubic parametric polynomials) for

interpolation of 4 control points (fit curve to 4 control points)
– Hermite

•  fit curve to 2 control points + 2 derivatives (tangents)
– Bezier

•  2 interpolating control points + 2 intermediate points to define the
tangents

– B-spline
•  To get C2 continuity

– NURBS
•  Different weights of the control points and
•  The control points can be at non-uniform intervalls

 Goods and bads with these curves.

12. Curves and Surfaces:

p0

p1

p2

p3

Splines and Basis

• If we examine the cubic B-spline from the
perspective of each control (data) point,
each interior point contributes (through the
blending functions) to four segments

• We can rewrite p(u) in terms of the data
points as

defining the basis functions {Bi(u)}

puBup ii)()(∑=

12. Curves and Surfaces:

B-Splines

u

p0 p1

p2

p3

p4

p5

p6 p7

p8

u=0 8
u

1 2 3 4 5 6 7

These are our control points, p0-
p8, to which we want to
approximate a curve

Illustration of how the control points are evenly (uniformly) distributed
along the parameterisation u of the curve p(u).

In each point p(u) of the curve, for a given u, the point is defined as a
weighted sum of the closest 4 surrounding points. Below are shown the
weights for each point along u=0→1

p0 p1 p2 p3 p4 p5 p6 p7 p8

100%

09. Curves and Surfaces:

B-Splines

p0 p1 p2 p3 p4

u

p5 p6 p7 p8

100%

The weight function (blend function) Bpi (u) for a point pi can thus be
written as a translation of a basis function B(t). Bpi(u) = B(u-i)

B(t):

t
0 1 2 -1 -2

100%

Blendfunction B1(u) for
point p1

puBup ii)()(∑=
Our complete B-spline
curve p(u) can thus be
written as:

SUMMARY

In each point p(u) of the curve, for a given u, the point is defined as a
weighted sum of the closest 4 surrounding points. Below are shown the
weights for each point along u=0→1

NURBS
NURBS is similar to B-Splines except that:
1.  The control points can have different weights, wi,

(heigher weight makes the curve go closer to that
control point)

2.  The control points do not have to be at uniform
distances (u=0,1,2,3...) along the parameterisa-
tion u. E.g.: u=0, 0.5, 0.9, 4, 14,…

NURBS = Non-Uniform Rational B-Splines
The NURBS-curve is thus defined as:

Division with the sum of the weights,
to make the combined weights sum
up to 1, at each position along the
curve. Otherwise, a translation of the
curve is introduced (which is not
desirable)

p(u) =
Bi (u)wii=0

n−1
∑ p(i)

Bi (u)wii=0

n−1
∑

12. Curves and Surfaces:

NURBS
•  Allowing control points at non-uniform distances

means that the basis functions Bpi() are being
streched and non-uniformly located.

•  E.g.:

Each curve Bpi() should of course look smooth and C2 –continuous.
But it is not so easy to draw smoothly by hand…(The sum of the
weights are still =1 due to the division in previous slide)

12. Curves and Surfaces:

u

Ulf Assarsson © 2004

l  Perspective correct
interpolation (e.g. for textures)

l  Taxonomy:
–  Sort first
–  sort middle
–  sort last fragment
–  sort last image

l  Bandwidth
–  Why it is a problem
–  How to ”solve” it

l  Be able to sketch the architecture of a moder graphics card

Sort-
first

Sort-
middle

Sort-last
fragment
Sort-last
image

Lecture 13:

Linearly interpolate (ui/wi, vi/wi, 1/wi) in
screenspace from each triangle vertex i.
Then at each pixel:

uip = (u/w)ip / (1/w)ip
vip = (v/w)ip / (1/w)ip

where ip = screen-space interpolated value
between the triangle vertices.

 Department of Computer Engineering

Application

PCI-E x16

Vertex
shader

Vertex
shader

Vertex
shader…

Primitive assembly

Clipping

Fragment Generation

Fragment
shader

Fragment
shader

Fragment
shader…

Fragment
Merge

Fragment
Merge

Fragment
Merge

…

Geo
shader

Geo
shader

Geo
shader

Vertex-, Geometry-
and Fragment
shaders allocated
from a pool of
many processors
(or ALUs)

