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Preface

These are notes for a databases course (TDA357/DIT620) taught in Gothenburg
in 2016. They cover the material presented during the lectures. Similar material
can also be found from course slides written by previous teachers. However, my
personal preference is to use the blackboard rather than slides. This gives a
better guarantee that the students (let alone the teacher) don’t fall asleep. It
also forces the lectures to have a natural, relaxed pace, with not too much
information. For reading outside the lectures, a complete text works better
than slides.

Just like slides published on course web sites, these course notes should
eliminate the need to take your own notes about everything. Then you can
concentrate more on listening and thinking. The best way to use these notes is
to read them both before and after each lecture. Then you will be prepared for
the material and maybe develop some questions in advance.

Even though these notes thus replace the slides, there are any number of
things they don’t replace:
• The course book. It has much more examples, explanations, and argu-

mentation than this little compendium.
• The lectures. Attending the lectures should increase your understanding.

However, reading these notes may compensate skipping a lecture or two
for intance because of illness.

• Practice. To build a proper understanding, you must build and use your
own database on a computer. You must also solve some theoretical prob-
lems by pencil and paper. The course assignments and exercises will help
you get this practice - provided you do them yourself!

We will use a running example that deals with geographical data: countries
and their capitals, neighbours, currencies, and so on. This is a bit different from
many other slides, books, and articles. In them, you can find examples such as
course descriptions, employer records, and movie databases. To my mind, such
examples feel more difficult since they are not common knowledge. This means
that, when learning new mathematical and programming concepts, you have
to learn new content at the same time. I find it easier to study new technical
material if the contents are familiar. For instance, it is easier to test a query
that is supposed to assign ”Paris” to ”the capital of France” than a query that
is supposed to assign ”60,000” to ”the salary of John Johnson”. There is simply
one thing less to keep in mind. It also eliminates to show example tables all
the time, because we can simply refer to ”the table containing all European
countries and their capitals”, which most readers will have clear enough in their
minds. Of course, we will have the occasion to show other kinds of databases as
well. The country database does not have all the characteristics that a database
might have, for instance, very rapid changes in the data.

This compendium proceeds in the order of the lectures. It is being written
during the course. My aim is to make every chapter available before the cor-
responding lecture is given. But I may also make corrections after the lecture.
The sections marked with an asterisk (*) are ones that will not be needed for
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the exam in Spring 2016.
The material has been inspired by the course book (Garcia-Molina, Ullman,

and Widom, Database systems: The Complete Book), by earlier course mate-
rial by Niklas Broberg and Graham Kemp, as well as by notes (in Finnish) by
Jyrki Nummenmaa. I am grateful to Jyrki Nummenmaa and Grégoire Détrez
on general advice and comments on the contents, and to Simon Smith, Adam
Ingmansson, and Viktor Blomqvist for comments during the course. More com-
ments, corrections, and suggestions are therefore most welcome - your name will
be added here if you don’t object!

Gothenburg, March 7, 2016

Aarne Ranta
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1 Introduction*

This chapter is an overview of the field of databases and of this course. In
addition to the material printed here, the lecture will also talk about practical
questions such as assignments, exercises, and the exam. This information can
be found on the course web page. The goal of this chapter (and the whole first
lecture) is to give you a clear picture of what you are expected to do and learn
during the course.

1.1 Data vs. programs

Computers run programs that process data. Sometimes this data comes from
user interaction and is thrown away after the program is run. But often the
data must be stored for a longer time, so that it can be accessed again. Banks,
for instance, have to store the data about bank accounts so that no penny is
lost.

It is typical that data lives much longer than the programs that process it:
decades rather than just years. Programs, even programming languages, may
be changed every five years or so. On the other hand, while data is maintained
for decades, it may also be changed very rapidly. For instance, a bank can have
millions of transactions daily, coming from ATM’s, internet purchases, etc. This
means that account balances must be continuously updated. At the same time,
the history of transactions must be kept for years.

A database is any collection of data that can be accessed and processed
by computer programs. It must support both updates (i.e. changes in the
data) and queries (i.e. questions about the data). It must be structured so
that these operations can be performed efficiently and accurately. For instance,
English texts describing the data would be both too slow and too inaccurate.
But the structure must also be generic enough so that it can be accessed in
different ways. For instance, the data structures of some advanced programming
language may be too hard to access from programs written in other languages.

1.2 A short history of databases

When databases came to wide use, for instance in banks in the 1960’s, they were
not yet standardized. They could be vendor specific, domain specific, or even
machine specific. It was difficult to exchange data and maintain it when for
instance computers were replaced. As a response to this situation, relational
databases were invented in around 1970. They turned out to be both struc-
tured and generic enough for most purposes. They have a mathematical theory
that is both precise and simple. Thus they are easy enough to understand by
users and easy enough to implement in different applications. As a result, re-
lational databases are often the most stable and reliable parts of information
systems. They can also be the most precious ones, since they contain the results
from decades of work by thousands of people.
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Despite their success, relational databases have recently been challenged
by other approaches. Some of the challengers want to support more complex
data than relations. For instance, XML (Extended Markup Language) supports
hierarchical databases, which were popular in the 1960’s but were deemed too
complicated by the proponents of relational databases. On the other end, big
data applications have called for simpler models. In many applications, such
as social media, accuracy and reliability are not so important as for instance
in bank applications. Speed is much more important, and then the traditional
relational models can be too rich. Non-relational approaches are known as
NoSQL, by reference to the SQL language introduced in the next section.

1.3 SQL

Relational databases are also known as SQL databases. SQL is a computer
language designed in the early 1970’s, originally called Structured Query Lan-
guage. The full name is seldom used: one says rather ”sequel” or ”es queue el”.
SQL is a special purpose language. Its purpose is to process of relational
databases. This includes several operations:
• queries, asking questions, e.g. ”what are the neighbouring countries of

France”
• updates, changing entries, e.g. ”change the currency of Estonia from

Crown to Euro”
• inserts, adding entries, e.g. South Sudan with all the data attached to it
• removals, taking away entries, e.g. German Democratic Republic when

it ceased to exist
• definitions, creating space for new kinds of data, e.g. for the main domain

names in URL’s
These notes will cover all these operations and also some others. SQL is

designed to make it easy to perform them - easier than a general purpose
programming language, such as Java or C. The idea is that SQL should
be easier to learn as well, so that it is accessible for instance to bank employ-
ees without computer science training. However, as we will see, most users of
databases today don’t even need SQL. They use some end user programs, for
intance an ATM interface with menus, which are simpler and less powerful than
full SQL. These end user programs are written by programmers as combinations
of SQL and general purpose languages.

Now, since a general purpose language could perform all operations that
SQL can, isn’t SQL superfluous? No, since SQL is a useful intermediate layer
between user interaction and the data. One reason is the high level of abstraction
in SQL. Another reason is that SQL implementations are highly optimized and
reliable. A general purpose programmer would have a hard time matching the
performance of them. Losing or destroying data would also be a serious risk.
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1.4 DBMS

The implementations of SQL are called database management systems
(DBMS). Here are some popular systems, in an alphabetical order:
• IBM DB2, proprietary
• Microsoft SQL Server, proprietary
• MySQL, open source, supported by Oracle
• Oracle, proprietary
• PostgreSQL, open source
• SQLite, open source
Each DBMS has a slightly different dialect of SQL. There is also an official

standard, but no existing system implements all of it, or only it. In these notes,
we will most of the time try to keep to the parts of SQL that belong to the
standard and are implemented by at least most of the systems.

However, since we also have to do some practical work, we have to choose
a DBMS to work in. The choice for the course in 2016 is PostgreSQL. Earlier
courses have used Oracle, so this is in a way an experiment. The main reasons
to try PostgreSQL are the following advantages over Oracle:
• it follows the standard more closely
• it is free and open source, hence easier to get hold of

1.5 Course contents

Lecture 1: Introduction

This is the chapter you are reading now. In addition to the material printed here,
the lecture will talk about practical questions such as assignments, exercises, and
the exam. This information can be found on the course web page. The goal
of this chapter (and the whole first lecture) is to make it clear what you are
expected to learn and to do during this course.

Lecture 2: Data modelling with relations

This chapter is about the representation of data in relational databases. Not all
data is ”naturally” relational, so that some encoding is necessary. Many things
can go wrong in the encoding, and lead to redundancy or even to unintended
data loss. This lecture gives several examples of different kinds of data. It
introduces the notion of relational schemas, which are in SQL implemented
by table definitions. But the level here is a bit more abstract than SQL.
This chapter also explains the basics of the mathematics of relations, which are
derived from set theory.

Lecture 3: Entity-Relationship diagrams

A popular device in modelling is E-R diagrams (Entity-Relationship dia-
grams). This chapter explains how different kinds of data are modelled by
E-R diagrams. We will also tell how E-R diagrams can be constructed from

9



descriptive texts. Finally, we will explain how they are, almost mechanically,
converted to relational schemes (and thereby eventually to SQL).

Lecture 4: Functional dependencies and normal forms

Mathematically, a relation can relate an object with many other objects. For
instance, a country can have many neighbours. A function, on the other hand,
relates each object with just one object. For instance, a country has just one
number giving its area in square kilometres (at a given time). In this per-
spective, relations are more general than functions. However, it is important
to acknowledge that some relations are functions. Otherwise, there is a risk
of redundancy, repetition of the information. Redundancy can lead to in-
consistency, if the information that should be the same in different places is
actually not the same. This can happen for instance as a result of updates.
But functional dependencies can help prevent this from happening. They can
be used for transforming the database into a normal form, where redundancy
is eliminated. There are many different normal forms, with weaker or stronger
guarantees of consistency. This chapter will introduce three normal forms and
two kinds of dependencies.

Lectures 5 and 6: SQL

Here we start getting our hands dirty with SQL. This chapter covers two lec-
tures. At the first lacture, we will do some live coding in the PostgreSQL system.
We will also explain the main language constructs of SQL. We will turn database
schemas to SQL definitions. We will build a database by insertions. We will
query it by selections, projections, joins, renamings, unions, intersections, etc.
At the second lecture, we add SQL groupings and aggregations, as well as views.
We will also take a look at low-level manipulations of strings and at the different
datatypes of SQL.

Lecture 7: Table modification and triggers

Here we take a deeper look at inserts, updates, and deletions, in the presence of
constraints. The integrity constraints of the database may restrict these actions
or even prohibit them. An important problem is that when one piece of data
is changed, some others may need to be changed as well. For instance, when
value is deleted or updated, how should this affect other rows that reference
it as foreign key? Some of these things can be guaranteed by constraints in
basic SQL. But some things need more expressive power. For example, when
making a bank transfer, money should not only be taken from one account, but
the same amount must be added to the other account. For situations like this,
DBMSs support triggers, which are programs that do many SQL actions at
once.

10



Lecture 8: Relational algebra and query compilation

Relational algebra is a mathematical query language. It is much simpler than
SQL, as it has only a few operations, each denoted by Greek letters. Being so
simple, relational algebra is more difficult to use for complex queries than SQL.
But for the very same reason, it is easier to analyse and optimize. Relational
algebra is therefore useful as an intermediate language in a DBMS. SQL queries
can be first translated to relational algebra, which is optimized before it is
executed. This chapter will tell the basics about this translation and some
query optimizations.

Lecture 9: SQL in software applications

End user programs are often built by combining SQL and a general purpose
programming language. This is called embedding, and the general purpose
language is called a host language. In this lecture, we will look at how SQL is
embedded in Java. We will also cover some pitfalls in embedding. For instance
SQL injection is a security hole where an end user can include SQL code in
the data that she is asked to give. In one famous example, the name of a student
includes a piece of SQL code that deletes all data from a student database.

Lecture 10: Remaining SQL topics: transactions, authorization, in-
dexes

Repeating what was said before: SQL is a huge language, and the course does
not cover all of it. This last SQL lecture is a ”smörg̊asbord” of things that
have not been covered before. They are not covered in the course assignments
either, but they may appear in the exam. Each of the topics moreover has some
theoretical interest. Thus transactions are related to concurrency, where
simultaneous database accesses by different users may create inconsistencies.
Authorization is a systematic view on the permissions (read, write, etc) that
different users can be given. Indexes are a way to make queries faster, at the
cost of some more space and lower update speed. These concepts are introduced
together with systematic ways of reasoning about the corresponding problems.

Lecture 11: Alternative data models

The relational data model has been dominating the database world for a long
time. But there are alternative models, some of which are gaining popularity.
XML is an old model, often seen as a language for documents rather than
data. In this perspective, it is a generalization of HTML. But it is a very
powerful generalization, which can be used for any structured data. XML data
objects need not be just tuples, but they can be arbitrary trees. XML also
has designated query languages, such as XPath and XQuery. This chapter
introduces XML and gives a summary of XPath. On the other end of the scale,
there are models simpler than SQL, known as ”NoSQL” models. These models
are popular in so-called big data applications, since they support the distribution
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of data on many computers. NoSQL is implemented in systems like Cassandra,
originally developed by Facebook and now also used for instance by Spotify.

1.6 The big picture

(figure to be improved :-)
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2 Data modelling with relations

This chapter is about the representation of data in relational databases. Not all
data is ”naturally” relational, which means some encoding is necessary. Many
things can go wrong in the encoding, and lead to redundancy, inconsistencies or
even to unintended data loss. This chapter gives several examples of different
kinds of data. It introduces the notion of relational schemas, which are in
SQL implemented by table definitions. But the level here is a bit more abstract
than SQL. This chapter also explains the basics of the mathematics of relations,
which are derived from set theory.

2.1 Relations and tables

The mathematical model of relational databases is, not surprisingly, relations.
Mathematically, a relation is a subset of a cartesian product of sets:

R ⊆ T1 × . . .× Tn

The elements of a relation are tuples, which we write in angle brackets:

〈t1, . . . , tn〉 ∈ T1 × . . .× Tn if t1 ∈ T1, . . . , tn ∈ Tn

In these definitions, each Ti is a set. The elements ti are the components of the
tuple. The cartesian product of which the relation is a subset is its signature.
The sets Ti are the types of the components.

In the database world, a relation is usually called a table. Tuples are called
rows. Here is an example of a table and its mathematical representation:

country capital currency
Sweden Stockholm SEK
Finland Helsinki EUR
Estonia Tallinn EUR

{〈Sweden,Stockholm,SEK〉, 〈Finland,Helsinki,EUR〉, 〈Estonia,Tallinn,EUR〉}

When eeing the relation as a table, it is also natural to talk abouts its
columns. Mathematically, a column is the set of components from a given
place i :

{ti | 〈. . . , ti, . . .〉 ∈ R}
It is a special case of a projection from the relation. (The general case, as we
will see later, is the projection of many components at the same time. The idea
is the same as projecting a 3-dimensional object with xyz coordinates to a plane
with just xy coordinates.

What is the signature of this relation? What are the types of its components?
For the time being, it is enough to think that every type is String. Then the
signature is

String× String× String
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However, database design can also impose more accurate types, such as 3-
character strings for the currency. This is an important way to guarantee the
quality of the data.

Now, what are ”country”, ”capital”, and ”currency” in the table, mathe-
matically? In databases, they are called attributes. In programming language
terminology, they would be called labels, and the tuples would be records.
Hence yet another representation of the table is a list of records,

[

{country = Sweden, capital = Stockholm, currency = SEK},

{country = Finland, capital = Helsinki, currency = EUR},

{country = Estonia, capital = Tallinn, currency = EUR}

]

Mathematically, the labels can be understood as indexes, that is, indicators of
the positions in tuples. (Coordinates, as in the xyz example is, also a possible
name.) Given a cartesian product (i.e. a signature signature)

T1 × . . .× Tn

we can fix a set of n labels (which are strings),

L = {a1, . . . , an} ⊂ String

and an indexing function

i : L→ {1, . . . , n}

which should moreover be a bijection (i.e. a one-to-one correspondance). Then
we can refer to each component of a tuple by using the label instead of the
index:

t.a = ti(a)

One advantage of labels is that we don’t need to keep the tuples ordered. For
instance, inserting a new row in a table in SQL by just listing the values without
labels is possible, but risky, since we may have forgotten the order.

A relation schema consists of the name of the relation, the attributes, and
the types of the attributes:

Countries(country : String, capital : String, currency : String)

The relation (table) itself is called an instance of the schema. The types will
in this chapter and the next ones usually be omitted, so that we write

Countries(country, capital, currency)

But in real databases (and in SQL) the types are obligatory.
One thing that follows from the definition of relations as sets is that the

order and repetitions are ignored. Hence for instance
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country capital currency
Finland Helsinki EUR
Finland Helsinki EUR
Estonia Tallinn EUR
Sweden Stockholm SEK

is the same relation as the one above. SQL, however, makes a distinc-
tion, marked by the DISTINCT and ORDER keywords. This means that, strictly
speaking, SQL tables are lists of tuples. If the order does not matter but the
repetitions do, the tables are multisets.

In set theory, you should think of a relation as a collection of facts. The first
fact is that Finland is a country whose capital is Helsinki and whose currency
is EUR. Repeating this fact does not add anything. The order of facts does not
mean anything either, since the facts don’t refer to each other.

2.2 Operations on relations

Set theory provides some standard operations that are also used in databases:

Union: R ∪ S = {t|t ∈ R or t ∈ S}
Intersection: R ∩ S = {t|t ∈ R and t ∈ S}
Difference: R− S = {t|t ∈ R and t /∈ S}
Cartesian product: R× S = {〈t, s〉|t ∈ R and s ∈ S}

However, the database versions are a bit different from set theory:
• Union, intersection, and difference are only valid for relations that have

the same schema.
• Cartesian products are flattened: 〈〈a, b, c〉, 〈d, e〉〉 becomes 〈a, b, c, d, e〉

These standard operations are a part of relational algebra. They are also a
part of SQL (with different notations). But in addition, some other operations
are important - in fact, even more frequently used:

Projection: πa,b,cR = {〈t.a, t.b, t.c〉 | t ∈ R}
Selection: σCR = {t | t ∈ R and C}
Theta join: R ./C S = {〈t, s〉 | t ∈ R and s ∈ S and C}

In selection and theta join, C is a condition that may refer to the tuples
and their components. In SQL, they correspond to WHERE clauses. The use of
attributes makes them handy. For instance.

σcurrency=EURCountries

selects those rows where the currency is EUR, i.e. the rows for Finland and
Estonia.

A moment’s reflection shows that theta join can be defined as the combina-
tion of selection and cartesian product:

R ./C S = σC(R× S)
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The ./ symbol without a condition denotes natural join, which joins tuples
that have the same values of the common attributes. It used to be the basic form
of join, but it is less common nowadays. Actually, maybe it should be avoided
because it relies on the names of attributes without making them explicit. But
here is the definition if you want to see it:

R ./S= {t+ 〈u.c1, . . . , u.ck〉|t ∈ R, u ∈ S, (∀a ∈ A ∩B)(t.a = u.a)}

where A is the attribute set of R, B is the attribute set of S, and B − A =
{c1, . . . , ck}. The + notation means putting together two tuples into one flat-
tened tuple.

An alternative definition expresses natural join in terms of theta join (exer-
cise!). Thus we can conclude: natural join is a special case of theta join, which
is a special case of the cartesian product.

2.3 Multiple tables and joins

The joining operator supports dividing data to multiple tables. Consider the
following table:
Countries:

name capital currency valueInUSD
Sweden Stockholm SEK 0.12
Finland Helsinki EUR 1.09
Estonia Tallinn EUR 1.09

This table has a redundancy, as the USD value of EUR is repeated twice.
As we will see later, redundancy is usually avoided. For instance, someone
might update the USD value of the currency of Finland but forget Estonia,
which would lead to inconsistency. You can also think of the database as a
story that states some facts about the countries. Normally you would only
state once the fact that EUR is 1.09 USD.

Redundancy can be avoided by splitting the table into two:
JustCountries:

name capital currency
Sweden Stockholm SEK
Finland Helsinki EUR
Estonia Tallinn EUR

Currencies:

code valueInUSD
SEK 0.12
EUR 1.09
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Searching for the USD value of the currency of Sweden now involves a join of
the two tables:

πvalueInUSD(JustCountries ./name=Sweden AND currency=code Currencies)

To anticipate Chapter 5, this is how it would be written in SQL:

SELECT valueInUSD

FROM JustCountries, Currencies

WHERE name = ’Sweden’ AND currency = code

Several things can be noted about this translation:
• The SQL operator SELECT corresponds to projection in relation algebra,

not selection!
• In SQL, WHERE corresponds to selection in relational algebra.
• The FROM statement, listing any number of tables, actually forms their

cartesian product.
Now, the SELECT-FROM-WHERE format is actually the most common idiom
of SQL queries. As the FROM forms the cartesian product of potentially many
tables, there is a risk that huge tables get constructed; keep in mind that the
size of a cartesian producs is the product of the sizes of its operand sets. The
query compiler of the DBMS, however, can usually prevent this from happening
by query optimization. In this optimization, it performs a reduction of the SQL
code to something much simpler, typically equivalent to relational algebra code.

2.4 Referential constraints

The schemas of the two relations above are

JustCountries(country,capital,currency)

Currencies(code,valueInUSD)

For the integrity of the data, we want to require that all currencies in JustCountries

exist in Currencies. We add to the schema a referential constraint,

JustCountries(country,capital,currency)

currency -> Currencies.code

In the actual database, the referential constraint prevents us from inserting a
currency in JustCountries that does not exist in Currencies.

2.5 Key and uniqueness constraints

A key of a relation is an attribute that determines all other attributes. A
composite key is a set of attributes that together determine all others. We
mark keys either by underlining or (in code ASCII text) with an underscore
prefix.
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JustCountries(_name,capital,currency)

currency -> Currencies.code

Currencies(_code,valueInUSD)

In this example, name and code work naturally as keys. In JustCountries,
capital could also work as a key, assuming that no two countries have the same
capital. This could be stated by adding one more statement to the schema, a
uniqueness constraint:

JustCountries(_name,capital,currency)

currency -> Currencies.code

unique capital

In the actual database, the key and uniqueness constraints prevent us from
inserting a new country with the same name or capital.

In JustCountries, currency would not work as a key, because many coun-
tries can have the same currency.

In Currencies, valueInUSD could work as a key, if it is unlike that two
currencies have exactly the same value. This would not be very natural of
course. But the strongest reason of not using valueInUSD as a key is that we
know that somee day two currencies might well get the same value.

A key can also be composite. This means that many attributes together
form the key. For example, in

PostalCodes(_city,_street,code)

the city and the street together determine the postal code, but the city alone is
not enough. Nor is the street, because many cities may have the same street-
name. For very long streets, we may have to look at the house number as well.
The postal code determines the city but not the street. The code and the street
together would be another possible composite key, but perhaps not very natural.

There is nothing that requires that all relations must have keys. Sometimes
this is even impossible, unless one includes all attributes in a composite key. In
many databases, artificial keys are therefore created. For instance, Sweden has
introduced a system of ”person numbers” to uniquely identify every resident of
the country. Artificial keys may also be automatically generated by the system
internally and never shown to the user. Then they are known as surrogate
keys.

2.6 Multiple values

The guiding principle of relational databases is that all types of the components
are atomic. This means that they may not themselves be tuples. This is what
is guaranteed by the flattening of tuples of tuples in the relational version of
the cartesian product. Another thing that is prohibited is list of values. Think
about, for instance, of a table listing the neighbours of each country. You might
be tempted to write something like
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country neighbours
Sweden Finland, Norway
Finland Sweden, Norway, Russia

But this is not possible, since the attributes cannot have list types. One has to
write a new line for each neighbourhood relationship:

country neighbour
Sweden Finland
Sweden Norway
Finland Sweden
Finland Norway
Finland Russia

The elimination of complex values (such as tuples and lists) is known as the
first normal form, 1NF. It is nowadays built in in relational database systems,
where it is impossible to define attributes with complex values.

2.7 Null values

Sometimes a value is unknown or known not to exist. The word NULL can then
be used. Null values have no clear meaning in set theory. They should generally
be avoided, but sometimes they cannot.
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3 Entity-Relationship diagrams

A popular device in modelling is E-R diagrams (Entity-Relationship diagrams).
This chapter explains how different kinds of data are modelled by E-R diagrams.
We will also tell how E-R diagrams can almost mechanically be derived from de-
scriptive texts. Finally, we will explain how they are, even more mechanically,
converted to relational schemes (and thereby eventually to SQL).

A relational database consists of a set of tables, which are linked to each
other by referential constraints. This is a simple model to implement and flexible
to use. But designing a database directly as tables can be hard, because only
some things are ”naturally” tables; some other things are more like relationships
between tables, and might seem to require a more complicated model.

E-R modelling is a richer structure than just tables, but it can be converted
to tables. Thus it helps design a database with right dependencies. When the
E-R model is ready, it can be automatically converted to relational database
schemas.

This chapter gives just the bare bones of E-R models. Their correct use is
a skill that has to be practiced. This practice is particularly suited for work in
pairs: you should discuss the model with your lab partner. You should debate,
challenge and disagree. Sometimes there are many models that are equally
good. But often a good-looking model is not so good if you take everything into
account. Four eyes see more than two.

The course book contains valuable examples and discussions. You can find
some more good examples in the old course slides. And of course, we will discuss
and give examples during the lecture!

Figure 2 shows an example of an E-R diagram. We will hopefully add some
other examples in later versions of these notes.

3.1 E-R syntax

Standard E-R models have six kind of elements, each drawn with different
shapes:

entity rectangle a set of independent objects
relationship diamond between 2 ore more entities
attribute oval belongs to entity or relationship
ISA relationship triangle between 2 entities, no attributes
weak entity double-sided rectangle depends on other entities
weak relationship double-sided rectangle between weak entity and entity

Between elements, there are connecting lines:
• a relationship is connected to the entities that it relates
• an attribute is connected to the entity or relationship to which it belongs
• an ISA relationship is connected to the entities that it relates
• a weak relationship is connected to a weak entity and another (possibly

weak) entity
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Notice thus that there are no connecting lines directly between entities, or be-
tween relationships, or from an attribute to more than one element. The ISA
relationship has no attributes. It is just a way to indicate that one entity is a
subentity of another one.

The connecting lines from a relationship to entities can have arrowheads:
• sharp arrowhead: the relationship is to/from at most one object
• round arrowhead: the relationship is to/from exactly one object
• no arrowhead: the relationship is to/from many objects
The attributes can be underlined or, equivalently, prefixed by . This means,

precisely as in relation schemas, that the attribute is a part of a key. The keys
of E-R elements end up as keys and referential constraints of schemas.

Here is a simple grammar for defining E-R diagrams. It is in the Extended
BNF format, where + means 1 or more repetitions, * means 0 or more, and ?

means 0 or 1.

Diagram ::= Element+

Element ::=

"ENTITY" Name Attributes

| "WEAK" "ENTITY" Name Support+ Attributes

| "ISA" Name SuperEntity Attributes

| "RELATIONSHIP" Name RelatedEntity+ Attributes

Attributes ::=

":" Attribute* # attributes start after colon

| # no attributes at all, no colon needed

RelatedEntity ::= Arrow Entity ("(" Role ")")? # optional role in parentheses

Support ::= Entity Relationship

Arrow ::= \--" | \->" | \-)"

Attribute ::= Ident | \_"Ident

Entity, SuperEntity, Relationship, Role ::= Ident

This grammar is useful in two ways:
• it defines exactly what combinations of elements are possible, so that you

can avoid ”syntax errors” (i.e. drawing impossible E-R diagrams)
• it can be used as input to a program that draws the diagrams and converts

the model to a database schema (see below)

3.2 From description to E-R

The starting point of an E-R diagram is often a text describing the domain. You
may have to add your own understanding to the text. The expressions used in
the text may give clues to what kinds of elements to use. Here are some typical
examples:
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entity CN (common noun) ”country”
attribute of entity the CN of X ”the population of X”
attribute of relationship adverbial ”in 1995”
relationship TV (transitive verb) ”X exports Y”
relationship (more generally) sentence with holes ”X lies between Y and Z”
subentity (ISA) modified CN ”EU country”
weak entity CN of CN ”city of X”

It is not always the case that just these grammatical forms are used. You should
rather try if they are usable as alternative ways to describe the domain. For
example, when deciding if something is an attribute of an entity, you should try
if it really is the something of the entity, i.e. if it is unique. In this way, you
can decide that the population is an attribute of a country, but export product
is not.

You can also reason in terms of the informal semantics of the elements:
• An entity is an independent class of objects, which can have properties

(attributes) as well as relationships to other entities.
• An attribute is a simple (atomic) property, such as name, size, colour,

date. It belongs to only one entity.
• A relationship states a fact between two or more entities. These can also

be entities of the same kind (e.g. ”country X is a neighbour of country
Y”).

• A subentity is a special case of a more general entity. It typically has
attributes that the general entity does not have. For instance, an EU
country has the attribute ”joining year”.

• A weak entity is typically a part of some other entity. Its identity (i.e.
key) needs this other entity to be complete. For instance, a city needs a
country, since ”Paris, France” is different from ”Paris, Texas”. The other
entity is called supporting entity, and the relationships are supporting
relationships. If the weak entity has its own key attributes, they are
called discriminators (e.g. the name of the city).

3.3 Converting E-R diagrams to database schemas

The standard conversions are shown in Figure 1. The conversions are unique
for ordinary entities, attributes, and many-to-many relationships.
• An entity becomes a relation with its attributes and keys just as in E-R.
• A relationship becomes a relation that has the key attributes of all related

entities, as well as its own attributes.
Other kinds of elements have different possibilities:
• In exactly-one relationships, one can leave out the relationship and use

the key of the related entity as attribute directly.
• In weak entities, one likewise leaves out the relationship, as it is always

exactly-one to the strong entity.
• An at-most-one relationship can be treated in two ways:
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Figure 1: Translating E-R diagrams to database schemas. Picture by Jonas
Almström-Dureg̊ard 2015.
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– the NULL approach: the same way as exactly-one, allowing NULL
values

– the (pure) E-R approach: the same way as to-many, preserving the
relationship. No NULLs needed. However, the key of the related
entity is not needed.

• An ISA relationship has three alternatives.
– the NULL approach: just one table, with all attributes of all suben-

tities. NULLs are needed.
– the OO (Object-Oriented) approach: separate tables for each suben-

tity and also for the superentity. No references between tables.
– the E-R approach: separate tables for super-and subentity, subentity

refers to the superentity.
As the name might suggest, the E-R approach is always recommended. It is the
most flexible one, even though it requires more tables to be created.

One more thing: the naming of the tables of attributes.
• Entity names could be turned from singular to plural nouns.
• Attribute names must be made unique. (E.g. in a relationship from and

to the same entity).
The course book actually uses plural nouns for entites, so that the conversion
is easier. However, we have found it more intuitive to use singular nouns for
entities, plural nouns for tables. The reason is that an entity is more like a kind
(type), whereas a table is more like a list. The book uses the term entity set
for entities, which is the set of entities of the given kind.

3.4 Using the Query Converter*

Notice: The query converter is an experimental program that you might want
to try. It is in no way compulsory for the course. We will show a live demo at
the lecture. You can skip this section if you don’t want to try the program.

You can find the query converter (command qconv) in

https://github.com/GrammaticalFramework/gf-contrib/tree/master/query-
converter/

You can specify an E-R model using the syntax described above. For example:

ENTITY Country _name : population

WEAK ENTITY City Country IsCityOf : _name population

ISA EUCountry Country : joiningDate

ENTITY Currency : _code name

RELATIONSHIP UsesAsCurrency -- Country -- Currency

If you have this text in the file countries.txt, then you can in qconv give
the command

d countries.txt
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Figure 2: An E-R diagram generated from the Query Converter qconv. Weak
entities and relationships have thick borderds.

The result is a diagram shown in Figure 2. You can see it if you have installed
the open-source Graphviz program. You will also get a database schema:

Country(_name,population)

City(_name,population,_name)

name -> Country.name

EUCountry(_name,joiningDate)

name -> Country.name

Currency(_code,name)

UsesAsCurrency(_countryName,_currencyCode)

countryName -> Country.name

currencyCode -> Currency.code

As an experimental feature, you will also get a text:

A country has a name and a population.

A city of a country has a name and a population.

An eucountry is a country that has a joining date.

A currency has a code and a name.

A country can use as currency a currency.
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Figure 3: An E-R diagram for currency ratings, with two supporting relations.

Figure 3 shows another example, where the weak entity Rating has two
supporting relations with Currency. This design was the result of a discussion
at a lecture.

The Query Converter will be completed and improved during and after the
course. It also has other functionalities: functional dependencies, normal forms,
SQL, relational algebra.

26



4 Functional dependencies and normal forms

Mathematically, a relation can relate an object with many other objects. For
instance, a country can have many neighbours. A function, on the other hand,
relates each object with just one object. For instance, a country has just one
number giving its area in square kilometres (at a given time). In this perspec-
tive, relations are more general than functions. However, it is important to
acknowledge that some relations are functions. Otherwise, there is a risk of
redundancy, repetition of the same information (in particular, of the same
argument-value pair). Redundancy can lead to inconsistency, if the informa-
tion that should be the same in different places is actually not the same. This
can happen for instance as a result of updates, which is known as an update
anomaly. But functional dependencies can help prevent this from happening.
They can be used for transforming the database into a normal form, where
redundancy is eliminated. There are many different normal forms, with weaker
or stronger guarantees of consistency. This chapter will introduce three normal
forms and two kinds of dependencies.

4.1 The design workflow

Functional dependency analysis is another tool for database design. It is quite
different from E-R diagrams and should ideally be used independently of it.
One way to do this (common in textbook examples), is the following procedure:

1. Collect all attributes into one and the same relation. At this point, it is
enough to consider the relation as a set of attributes,

S = {A1, . . . , An}

2. Specify the functional dependencies and multivalued dependencies among
the attributes. Informally,
• a functional dependency (FD) A→ B means that, if you set the

value of A, there is only one possible value of Bxs. This generalizes
to sets of attributes on both sides of the arrow.

• a multivalue dependency (MVD) A →→ Bmeans that, the value
of B depends only on the value of A. But there can be many values.
This generalizes to sets of attributes on both sides of the arrow. The
exact definition of MVD is a bit tricky, and MVD analysis is less
common than FD analysis.

1. From the functional dependencies, calculate the possible keys of the rela-
tion. Informally,
• a key is a combination X of attributes such that X → S, i.e. all

attributes of the relation are determined by the attributes in X.
1. From the FDs, MVDs, and keys together, calculate the violations of

normal forms. In summary,
• violations of the third normal form (3NF) result from FDs
• violations of the Boyce-Codd normal form (BCNF) likewise result

from FDs
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• violations of the fourth normal form (4NF) result from MVDs

1. From the normal form violations, compute a decomposition of the rela-
tion to a set of smaller relations. These smaller relations each have their
own FDs, MVDs, and keys. But it is always possible to reach a state with
no violations by iterating the decomposition. The result is a set of tables,
each with their own keys, which have no violations.

2. Decide what decomposition you want. All normal forms have their pros
and cons. At this point, you may want to compare the dependency-based
design with the E-R design.

Dependency-based design is, in a way, more mechanical than E-R design.
In E-R design, you have to decide many things: the ontological status of each
concept (whether it is an entity, attribute, relationship, etc). You also have to
decide the keys of the entities. In dependency analysis, you only have to decide
the basic dependencies. Lots of other dependencies are derived from these by
mechanical rules. Also the possible keys - candidate keys - are mechanically
derived. The decomposition to normal forms is mechanical as well. You just
have to decide what normal form (if any) you want to achieve. In addition, you
have to decide which of the candidate keys to declare as the primary key of
each table.

4.2 Examples of dependencies and normal forms

4.2.1 Functional dependencies, keys, and superkeys

Let us start with a table of countries, currencies, and values of currencies (in
USD, on a certain day).

country currency value
Sweden SEK 0.12
Finland EUR 1.10
Estonia EUR 1.10

We assume that each country has a unique currency, and each currency has
a unique value. This gives us two functional dependencies:

country -> currency

currency -> value

The dependencies are much like implications in the logical sense. Thus they are
transitive, which means that we can also infer the FD

country -> value

The set of attributes that can be inferred from a set of attributes X is the
closure of X. Thus, since value can be inferred from country, if belongs to its
closure. In fact,
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country+ = {country, currency, value}

noticing that A → A is always a valid FD, called trivial functional depen-
dency.

Now, a possible key of a relation is a set of attributes whose closure is the
whole signature. Thus country alone is a possible key. However, it is not the
only set that determines all attributes. All of

country

country currency

country value

country currency value

do this. However, all of these sets but the first are just irrelevant extensions of
the first. They are not keys but superkeys, i.e. supersets of keys. We conclude
that country is the only possible key of the relation.

4.2.2 BCNF

What to do with the other functional dependency, currency -> value? We
could call it a non-key FD, which is not standard terminology, but a handy
term. Looking at the table, we see that it creates a redundancy: the value
is repeated every time a currency occurs. Non-key FD’s are called BCNF
violations. They can be removed by BCNF decomposition: we build a
separate table for each such FD. Here is the result:

country currency
Sweden SEK
Finland EUR
Estonia EUR

currency value
SEK 0.12
EUR 1.10

These tables have no BCNF violations, and no redundancies either. Each of
them has their own functional dependencies and keys:

Countries (_country, currency)

FD: country -> currency

reference: currency -> Currencies.currency

Currencies (_currency, value)

FD: currency -> value

They also enjoy lossless join: we can reconstruct the original table by a natural
join Countries ./ Currencies.
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4.2.3 3NF

Now, let us consider an example where BCNF is not quite so beneficial. Here
is a table with cities, streets, and postal codes.

city street code
Gothenburg Framnäsgatan 41264
Gothenburg Rännvägen 41296
Gothenburg Hörsalsvägen 41296
Stockholm Barnhusgatan 11123

Here is the signature with functional dependencies:

city street code

city street -> code

code -> city

The keys are the composite keys city street and code street. But notice
that the non-key FD code -> city refers back to a key. If we now perform
BCNF decomposition, we obtain the schemas

Cities(_code, city)

FD: code -> city

Streets(_street, _code)

The problem with this decomposition is that we miss one FD, city -> street

-> code. And in fact, the decomposition does not help remove redundancies.
The original relation is fine as it is. It is already in the third normal form
(3NF). 3NF is like BCNF, except that a non-key FD X → A is allowed if A is a
part of some key. Here, city is a part of a key, so it is fine. (An attribute that
is a part of a key is called prime.)

The 3NF requirement is weaker than BCNF, but it does not guarantee the
removal of all FD redundancies. In many cases, the result is actually the same:
the country-currency-value table is an example.

4.2.4 4NF

Multivalued dependencies (MVD) are another kind of dependencies. An
MVD X →→ Y says that X determines Y independently of all other attributes.
(The precise definition is a bit complicated, and is given in a later section.)

Here is an example: a table of countries, their export products, and countries
to which the produces are exported:

country product exportTo
Sweden cars Norway
Sweden paper Denmark
Sweden cars Denmark
Sweden paper Norway

30



In this table, Sweden exports both cars and paper to both Denmark and Norway.
More generally, we can assume as a fact about the domain that, whatever a
country exports to some other country, it also exports to all other countries
that it has trade with. Hence the MVD

country ->> product

Now, the table has a redundancy: both cars and paper and Norway and Den-
mark are mentioned repeatedly. We can in fact find an 4NF violation: an
MVD where the LHS is not a superkey. The 4NF decomposition splits the
table in accordance to the violating MVD:

country product
Sweden cars
Sweden paper

country exportTo
Sweden Norway
Sweden Denmark

These tables are free from violations. Hence they are in 4NF. Their natural
join losslessly returns the original table.

In the previous example, we could actually prove the MVD by looking at the
tuples (see definition of MVD below). Finding a provable MVD in an instance of
a database can be difficult, because so many combinations must be present. An
MVD might of course be assumed to hold as a part of the domain description.
This can lead to a better structure and smaller tables. However, the natural
join from those tables can produce unwanted results.

4.2.5 A bigger example

Let us collect everything about a domain into one big table:

country capital popCountry popCapital currency value product exportTo

We identify some functional dependencies and multivalued dependencies:

country -> capital popCountry currency

capital -> country popCapital

currency -> value

country ->> product

One possible BCNF decomposition gives the following tables:

_country capital popCountry popCapital currency

_currency value

_country _product _exportTo
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This looks like a good structure, except for the last table. Applying 4NF de-
composition to this gives the final result

_country capital popCountry popCapital currency

_currency value

_country _product _exportTo

_country _exportTo

A word of warning: mechanical decomposition can randomly choose some other
dependencies to split on, and lead to less natural results. For instance, it can
use capital rather than country as keys in the tables.

In the two sections that follow, we will show the precise algorithms that are
involved, and which you should learn to execute by hand. The definitions might
look more scary than they actually are. Most of the concepts are intuitively
simple, but their precise definitions can require some details that one usually
doesn’t think about. The notion of MVD is usually the most difficult one.

In the last section, we will look at the support given by the Query Converter
(qconv) for dependency analysis and normal form decomposition.

4.2.6 One more example: FD or MVD?

(A similar example was treated with an MVD in the first version of these notes.
But this turned out to be overkill: the same result can be achieved without the
MVD.)

How should we model the neighbours of a country?

country population currency neighbour

We can assume that country determines the population and the currency. Hence
the FD

country -> population currency

But what about the neighbours? Surely a country can have many neighbours,
so there is no FD here. But aren’t the neighbours independent of the population
and the currency? Then we would add the MVD

country ->> neighbour

However, recalling that (1) all FDs are are MVDs, and (2) MVDs are symmetric
(see the definitions below), this MVD is actually a consequence of the FD! Hence
adding it does not give anything new to our analysis.

In fact, the only key of the relation is country neighbour. This implies
that the FD is a 3NF violation. Both 3NF and BCND decomposition give the
same nice result:

country population currency

country neighbour
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4.3 Mathematical definitions of dependencies

Before introducing new concepts, we will repeat some of the definitions about
tuples from Chapter 2. We will most of the time speak of relations just as their
sets of attributes. Also the dependency algorithms refer only to the attributes.
But the definitions in the end do refer to tuples. By tuples, we will now mean
labelled tuples (records) rather than set-theoretic ordered tuples as in Chapter
2.
Definition (tuple, attribute, value). A tuple has the form

{A1 = v1, . . . , An = vn}

where A1, . . . , An are attributes and v1, . . . , vn are their values.
Definition (signature, relation). The signature of a tuple, S, is the set of
all its attributes, {A1, . . . , An}. A relation R of signature S is a set of tuples
with signature S. But we will sometimes also say ”relation” when we mean the
signature itself.
Definition (projection). If t is a tuple of a relation with signature S, the
projection t.Ai computes to the value vi.
Definition (simultaneous projection). If X is a set of attributes {B1, . . . , Bm} ⊆
S and t is a tuple of a relation with signature S, we can form a simultaneous
projection,

t.X = 〈t.B1, . . . , t.Bm〉

Definition (functional dependency, FD). Assume X is a set of attributes and A
an attribute, all belonging to a signature S. Then A is functionally dependent
on X in the relation R, written X → A, if
• for all tuples t,u in R, if t.X = u.X then t.A = u.A.

If Y is a set of attributes, we write X → Y to mean that X → A for every A
in Y.
Definition (multivalued dependency, MVD). Let X,Y,Z be disjoint subsets of a
signature S such that S = X∪Y ∪Z. Then Y has a multivalued dependency
on X in R, written X →→ Y , if
• for all tuples t,u in R, if t.X = u.X then there is a tuple v in R such that

– v.X = t.X
– v.Y = t.Y
– v.Z = u.Z

An alternative notation is X →→ Y | Z, emphasizing that Y is independent
of Z.

To see the power of these definitions, we can now easily prove a slightly
surprising result saying that every FD is an MVD:
Theorem. If X → Y then X →→ Y
Proof. Assume that t,u are tuples in R such that t.X = u.X. We select v = u.
This is a good choice, because

1 u.X = t.X by assumption
2 u.Y = t.Y by the functional dependency X → Y
3 u.Z = u.Z by reflexivity of identity.
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Note. MVDs are symmetric on their right hand side: if X →→ Y , which means
X →→ Y | Z where Z = S −X − Y , then also X →→ Z. Thus in the previous
example we could have written, equivalently,

country ->> exportedTo

4.4 Definitions of closures, keys, and superkeys

As a starting point of dependency analysis, a relation is charaterized by its
signature S, its functional dependencies FD, and its multivalued dependencies
MVD. We start with things where we don’t need MVD.
Assume thus a signature (i.e. set of attributes) S and a set FD of functional
dependencies.
Definition. An attribute A follows from a set of attributes Y, if there is an
FD X → A such that X ⊆ Y .
Definition (closure of a set of attributes under FDs). The closure of a set of
attributes X ⊆ S under a set FD of functional dependencies, denoted X+, is
the set of those attributes that follow from X.
Algorithm (closure of attributes). If X ⊆ S, then the closure X+, can be
computed in the following way:

1. Start with X+ = X
2. Set New = {A | A ∈ S,A /∈ X+, A follows from X+}
3. If New = ∅, return X+, else set X+ = X + ∪New and go to 1

Definition (closure of a set of FDs). The closure of a set FD of functional
dependencies, denoted by FD+, is defined as follows:

FD+ = {X → A | X ⊆ S,A ∈ X+, A /∈ X}

The last condition excludes trivial functional dependencies.
Definition (trivial functional dependencies). An FD X → A is trivial, if
A ∈ X.
Definition (superkey, key). A set of attributes X ⊆ S is a superkey of S, if
S ⊆ X+.
A set of attributes X ⊆ S is a key of S if
• X is a superkey of S
• no proper subset of X is a superkey of S

4.5 Definitions and algorithms for normal forms

Definition (Boyce-Codd Normal Form, BCNF violation). A functional depen-
dency X → A violates BCNF if
• X is not a superkey
• the dependency is not trivial

A relation is in Boyce-Codd Normal Form (BCNF) if it has no BCNF
violations.
Note. Any trivial dependency A→ A always holds even if A is not a superkey.
Definition (prime). An attribute A is prime if it belongs to some key.
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Definition (Third Normal Form, 3NF violation). A functional dependency
X → A violates 3NF if
• X is not a superkey
• the dependency is not trivial
• A is not prime

Note. 3NF is a weaker normal form than BCNF: Any violation X → A of 3NF
is also a violation of BCNF, because it says that X is not a superkey. Hence,
any relation that is in BCNF is also in 3NF.
Definition (trivial multivalued dependency). A multivalued dependency X →
→ A is trivial if Y ⊆ X or X ∪ Y = S.
Definition (Fourth Normal Form, 4NF violation). A multivalued dependency
X →→ A violates 4NF if
• X is not a superkey
• the MVD is not trivial.

Note. 4NF is a stronger normal form than BCNF: If X → A violates BNCF,
then it also violates 4NF, because
• it is an MVD by the theorem above
• it is not trivial, because

– if {A} ⊆ X, then X → A is a trivial FD and cannot violate BCNF
– if X ∪ {A} = S, then X is a superkey and X → A cannot violate

BCNF
Algorithm (BCNF decomposition). Consider a relation R with signature S
and a set F of functional dependencies. R can be brought to BCNF by the
following steps:

1. If R has no BCNF violations, return R
2. If R has a violating functional dependency X → A, decompose R to two

relations

• R1 with signature X ∪ {A}
• R2 with signature S − {A}

3. Apply the above steps to R1 and R2 with functional dependencies pro-
jected to the attributes contained in each of them.

One can combine several violations with the same left-hand-side X to produce
fewer tables. Then the violation X → Y decomposes R to R1(X,Y) and R2(S-
Y).
Note. Step 3 of the BCNF decomposition algorithm involves the projection
of functional dependencies. This can in general be a complex procedure.
However, for most cases handled during this course, it is enough just to filter
out those dependencies that do not appear in the new relations.
Algorithm (4NF decomposition). Consider a relation R with signature S and
a set M of multivalued dependencies. R can be brought to 4NF by the following
steps:

1. If R has no 4NF violations, return R
2. If R has a violating multivalued dependency X →→ Y , decompose R to

two relations
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• R1 with signature X ∪ {Y }
• R2 with signature S − Y

3. Apply the above steps to R1 and R2
Note. This algorithm has the same structure as the BCNF decomposition.
For 3NF decomposition, a very different algorithm is used, seemingly with no
iteration. But a involved iteration can be needed to compute the minimal basis
of the FD set.
Concept (minimal basis of a set of functional dependencies; not a rigorous
definition). A minimal basis of a set F of functional dependencies is a set F-
that implies all dependencies in F. It is obtained by first weakening the left hand
sides and then dropping out dependencies that follow by transitivity. Weakening
an LHS in X → A means finding a minimal subset of X such that A can still
be derived from F-.
Algorithm (3NF decomposition). Consider a relation R with a set F of func-
tional dependencies.

1. If R has no 3NF violations, return R.
2. If R has 3NF violations,

• compute a minimal basis of F- of F
• group F- by the left hand side, i.e. so that all depenencies X → A

are grouped together
• for each of the groups, return the schema XA1 . . . An with the com-

mon LHS and all the RHSs
• if one of the schemas contains a key of R, these groups are enough;

otherwise, add a schema containing just some key
Example (minimal basis). Consider the schema

country currency value

country -> currency

country -> value

currency -> value

It has one 3NF violation: currency -> value. Moreover, the FD set is not a
minimal basis: the second FD can be dropped because it follows from the first
and the third ones. Hence we have a minimal basis

country -> currency

currency -> value

Applying 3NF decomposition to this gives us two schemas:

country currency

currency value

i.e. exactly the same ones as we would obtain by BCNF decomposition. These
relations are hence not only 3NF but also BCNF.
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4.6 Relation analysis in the Query Converter*

The qconv command f reads a relation from a file and prints out relation info:
• the closure of functional dependencies
• superkeys
• keys
• normal form violations

The command n reads a relation from the same file format and prints out de-
compositions in 3NF, BCNF, and 4NF.

The format of these files is as in the following example:

country capital popCountry popCapital currency value product exportTo

country -> capital popCountry currency

capital -> popCapital

currency -> value

country ->> product

The Haskell code in

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-
converter/Fundep.hs

is a direct rendering of the mathematical definitions. There is a lot of room for
optimizations, but as long as the number of attributes is within the usual limits
of textbook exercises, the naive algorithms work perfectly well.
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5 SQL

Here we start getting our hands dirty with SQL. This chapter covers two lectures.
At the first lacture, we will do some live coding in the PostgreSQL system. We
will also explain the main language constructs of SQL. We will turn database
schemas to SQL definitions. We will build a database by insertions. We will
query it by selections, projections, joins, renamings, unions, intersections, etc.
At the second lecture, we add SQL groupings and aggregations, as well as views.
We will also take a look at low-level manipulations of strings and at the different
datatypes of SQL.
NOTE: This chapter is not an SQL tutorial, but an overview of the syntax and
semantics of the language. We do give some examples of SQL usage, but focus
more on possibly surprising things than the common usage. The book gives
many more examples, and there is a detailed on-line tutorial in

http://www.w3schools.com/sql/

This tutorial also has a nice index of SQL keywords.

5.1 SQL in a nutshell

Figure 4 shows a grammar of SQL. It is not full SQL, but it does contain all those
constructs that are used in this course for database definitions and queries. The
syntax for triggers, indexes, authorizations, and transactions will be covered in
later chapters.

In addition to the standard constructs, different DBMSs contain their own
ones, thus creating ”dialects” of SQL. They may even omit some standard con-
structs. In this respect, PostgreSQL is closer to the standard than many other
systems.

The grammar notation aimed for human readers. It is hence not completely
formal. A full formal grammar can be found e.g. in PostgreSQL references:

http://www.postgresql.org/docs/9.5/interactive/index.html

Another place to look is the Query Converter source file

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-
converter/MinSQL.bnf

It is roughly equivalent to Figure 4, and hence incomplete. But it is completely
formal and is used for implementing an SQL parser.1

The grammar is BNF (Backus Naur form) with the following conventions:
• CAPITAL words are SQL keywords, to take literally
• small character words are names of syntactic categories, defined each in

their own rules

1 The parser is generated by using the BNF Converter tool,
http://bnfc.digitalgrammars.com/ which is also used for the relational algebra and
XML parsers in qconv.
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statement ::= type ::=

CREATE TABLE tablename ( CHAR ( integer ) | VARCHAR ( integer ) | TEXT

* attribute type inlineconstraint* | INT | FLOAT

* [CONSTRAINT name]? constraint

) ; inlineconstraint ::= ## not separated by commas!

| PRIMARY KEY

DROP TABLE tablename ; | REFERENCES tablename ( attribute ) policy*

| | UNIQUE | NOT NULL

INSERT INTO tablename tableplaces? values ; | CHECK ( condition )

| | DEFAULT value

DELETE FROM tablename

? WHERE condition ; constraint ::=

| PRIMARY KEY ( attribute+ )

UPDATE tablename | FOREIGN KEY ( attribute+ )

SET setting+ REFERENCES tablename ( attribute+ ) policy*

? WHERE condition ; | UNIQUE ( attribute+ ) | NOT NULL ( attribute )

| | CHECK ( condition )

query ;

| policy ::=

CREATE VIEW viewname ON DELETE|UPDATE CASCADE|SET NULL

AS ( query ) ; ## alternatives: CASCADE and SET NULL

|

ALTER TABLE tablename tableplaces ::=

+ alteration ; ( attribute+ )

|

COPY tablename FROM filepath ; values ::=

## postgresql-specific, tab-separated VALUES ( value+ ) ## keyword VALUES only in INSERT

| ( query )

query ::=

SELECT DISTINCT? columns setting ::=

? FROM table+ attribute = value

? WHERE condition

? GROUP BY attribute+ alteration ::=

? HAVING condition ADD COLUMN attribute type inlineconstraint*

? ORDER BY attributeorder+ | DROP COLUMN attribute

|

query setoperation query localdef ::=

| WITH tablename AS ( query )

query ORDER BY attributeorder+

## no previous ORDER in query columns ::=

| * ## literal asterisk, select all columns

WITH localdef+ query | column+

table ::= column ::=

tablename expression

| table AS? tablename ## only one iteration allowed | expression AS name

| ( query ) AS? tablename

| table jointype JOIN table ON condition attributeorder ::=

| table jointype JOIN table USING (attribute+) attribute (DESC|ASC)?

| table NATURAL jointype JOIN table

setoperation ::=

condition ::= UNION | INTERSECT | EXCEPT

expression comparison compared

| expression NOT? BETWEEN expression AND expression jointype ::=

| condition boolean condition LEFT|RIGHT|FULL OUTER?

| expression NOT? LIKE ’pattern*’ | INNER?

| expression NOT? IN values

| NOT? EXISTS ( query ) comparison ::=

| expression IS NOT? NULL = | < | > | <> | <= | >=

| NOT ( condition )

compared ::=

expression ::= expression

attribute | ALL|ANY values

| tablename.attribute

| value operation ::=

| expression operation expression + | - | * | / | %

| aggregation ( DISTINCT? *|attribute) | || ## literal two bars, string concat

| ( query )

pattern ::=

value ::= % | _ | character ## matching any string, any char

integer | float | ’string’ | [ character* ]

| value operation value | [^ character* ]

| NULL

aggregation ::=

MAX | MIN | AVG | COUNT | SUM

Figure 4: A grammar of the main SQL constructs.
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• | separates alternatives
• + means one or more, separated by commas
• * means zero or more, separated by commas
• ? means zero or one
• in the beginning of a line, + * ? operate on the whole line; elsewhere,

they operate on the word just before
• ## start comments, which explain unexpected notation or behaviour
• other symbols, e.g. parentheses, mean literal parts of SQL code (except

in || and * operators)
• parentheses can be added to disambiguate the scopes of operators

Another important aspect of SQL syntax is case insensitivity:
• keywords are usually written with capitals, but can be written by any

combinations of capital and small letters
• the same concerns identifiers, i.e. names of tables, attributes, constraints
• however, string literals in single quotes are case sensitive

5.2 Database and table definitions

Logically, the creation of a database starts with a statement

CREATE DATABASE dbname ;

But you will seldom see this statement. If you use the school’s PostgreSQL
installation, you already have a database created, and you should work under
that. If you are administrating your own PostgreSQL installation, you may use
the Unix shell command

createdb dbname

After this, you can start PostgreSQL with the Unix shell command

psql dbname

Once a database is created, tables can be added by CREATE TABLE state-
ments. These statements implement the database schemas as discussed in earlier
chapters. Unlike in schemas, types are compulsory, but keys are not.

This leads us to a translation from relation schemas to SQL statements. The
general form of a schema is

relation ( attribute , ... , attribute )

foreignAttribute -> relation.attribute

...

foreignAttribute -> relation.attribute

This is converted to the SQL statemant
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CREATE TABLE relation (

attribute type,

...

attribute type,

PRIMARY KEY ( keyAttributes ),

FOREIGN KEY ( foreignAttribute ) REFERENCES relation (attribute),

...

FOREIGN KEY ( foreignAttribute ) REFERENCES relation (attribute)

)

where each type is selected in a suitable way. The ”primary key” is the set of
all key attributes. The ”foreign keys” can also be grouped into tuples.

As for the types, SQL has several types for strings: CHAR(n), VARCHAR(n),
and TEXT. In earlier times, and in other DBMSs, these types may have perfor-
mance errors. However, the PostgreSQL manual says as follows: ”There are no
performance differences between these types... In most situations text or char-
acter varying = should be used.” Following this advice, we will in the following
use TEXT as the only string type. Objects of all the three types are string
literals in single quotes (e.g. ’foo bar’’). Spaces are preserved.

Example:

Countries (_name,capital,population,currency)

capital -> Cities.name

currency -> Currencies.code

gives

CREATE TABLE Countries (

name TEXT,

capital TEXT,

population INT,

currency TEXT,

PRIMARY KEY (name),

FOREIGN KEY (capital) REFERENCES Cities (name),

FOREIGN KEY (currency) REFERENCES Currencies (code)

)

In addition to these schema elements, some other constraints can be added. For
example, in this case, the following would make sense:

UNIQUE (capital),

NOT NULL (capital)

as a way to express that capital is another candidate key of Countries. This is
told us by the functional dependencies, but only one set of attributes can be
the PRIMARY KEY. Notice that UNIQUE, unlike PRIMARY KEY, does not
imply NOT NULL, so this must be stated separately.

Constraints can also be given names:
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CONSTRAINT primaryKeyName PRIMARY KEY (name)

This may help get better error messages. It also makes it possible to remove
constraints later if needed. At the opposite end of verbosity are inline con-
straints, which are stated together with the attributes they concern:

name TEXT PRIMARY KEY

More on constraints will follow in Chapter 6, where in particular the CHECK
constraints are discussed.

5.3 Inserting values

The INSERT INTO statement works with both value lists and queries. Here is
a list:

INSERT INTO Places VALUES (’Oslo’,’Norway’,’60N’)

where the fields must match the schema of Places; we could here assume

Places (name TEXT, country TEXT, latitude TEXT)

If we want to quickly populate Places by the capitals of countries, we can do

INSERT INTO Places (SELECT capital,name FROM Countries)

This will leave the latitude attribute undefined. Alternatively, we can initialize
the latitude with a value, e.g. ’0’ (because this is the longest latitude on the
globe and therefore the most probable choice ;-):

INSERT INTO Places (SELECT capital,name,’0’ FROM Countries)

As yet another alternative, the CREATE TABLE statement could have specified
a default for latitude with an inline constraint,

latitude TEXT DEFAULT ’0’

There are always many ways of expressing the things in SQL! (However, DE-
FAULT constraints cannot appear separately in the usual way but must be
inlined.)

In PostgreSQL, there is a quick way to insert values from tab-separated files:

COPY tablename FROM filepath

Notice that a complete filepath is required. The data in the file must of course
match your database schema. To give an example, if you have a table

Countries (name,capital,area,population,continent,currencycode,currencyname)

you can read data from a file that looks like this:
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Andorra Andorra la Vella 468 84000 EU EUR Euro

United Arab Emirates Abu Dhabi 82880 4975593 AS AED Dirham

Afghanistan Kabul 647500 29121286 AS AFN Afghani

The file

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-
converter/countries.tsv

can be used for this purpose. It is extracted from the Geonames database,
http://www.geonames.org/

An alternative method is to generate lots of INSERT commands into a file.
Such a file can also include other SQL commands - you can, for instance, save
all your work in it. Then you can build your database, or parts of it, with the
PostgreSQL command

\i file.sql

5.4 Query usage and semantics: simple queries

This section covers the part of SQL presented on Lecture 5.
The most common form of a query is

SELECT attributes

FROM tables

WHERE condition

It corresponds to the relational algebra expression

πattributesσcondition(table× . . .× table)

Thus, to understand its meaning, it should be read in the order in which the
processing happens:

FROM tables WHERE condition SELECT attributes

Notice that only the SELECT part is compulsory; you can use it on an expres-
sion that doesn’t refer to any table:

SELECT 2+2

5.4.1 The cartesian product (FROM)

Here we list the table names we want to query about. If the same table is used
twice, it can be given different names:

SELECT A.name, B.capital

FROM Countries AS A, Countries AS B

WHERE A.name = B.capital
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shows countries that have the same name as some other country’s capital.
A table can also be given as a subquery. In this case, it is obligatory to give

it a name.

SELECT name

FROM (

SELECT name,capital

FROM countries) AS C

WHERE C.name = C.capital

shows countries that have the same name as their capital. (The subquery is
rather superfluous in this very example, though.)

In addition to table names and subqueries, tables formed by different JOIN
operations can be included. More on this in Section 5.5.4.

5.4.2 The condition on attributes (WHERE)

Conditions are boolean-valued expressions. The WHERE clause filters those
tuples that make the condition TRUE. The conditions are built by
• comparison operators (such as =, <, <>, (NOT) LIKE) from expres-

sions referring values in tuples
– a special kind of comparison is with ALL and ANY, compared to a

list of values or a subquery.
x < ALL (2,3,4)

means that x is at most 1. If we change ALL to ANY, then x must
be at most 3.

• query-related operators (NOT) EXISTS and (NOT) IN from subqueries
• logical operators (AND, OR, NOT) from conditions

The operand expressions can be

• literals (strings, integers, floats)

• attributes, possibly qualified with table names

• built from other expressions with arithmetic operations (+, -, etc)

• subqueries returning exactly one atomic values, e.g.

(SELECT capital FROM Countries WHERE name = ’Sweden’)

More precisely, conditions have a three-valued logic, because of the pres-
ence of NULL. Comparisons with NULL always result in NULL. Logical
operators have the following meanings (T = TRUE, F = FALSE, U =
UNKNOWN)
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p q NOT p p AND q p OR q
T T F T T
T F ” F T
T U ” U T
F T T F T
F F ” F F
F U ” F U
U T U U T
U F ” F U
U U ” U U

A tuple satisfies a WHERE clause only if it returns T, not one with U. Keep in
mind, in particular, that NOT U = U!

5.4.3 The projected tuples (SELECT)

The projected tuples can be formed in several ways:
• attributes from the FROM clause, either bare or qualified
• expressions involving the attributes
• both of these with new names (expr AS name)

For instance, the following selects big countries with size just marked big:

SELECT name, ’big’ AS size

FROM Countries

WHERE population > 50000000

The expressions may involve aggregation operators: COUNT, AVG, SUM,
MIN, MAX. For instance,

SELECT SUM(population)

FROM Countries

WHERE currency = ’EUR’

returns the total population of Euro countries. For COUNT, also the argument
* is meaningful.

Selection by default returns duplicates if they exist in the tables. Projections,
in particular, may produce duplicates:

SELECT currency

FROM Countries

repeats EUR several times. Duplicates can be removed by the DISTINCT
keyword, which also works inside aggregations:

SELECT DISTINCT currency

SELECT COUNT(DISTINCT currency)
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5.4.4 Set operations on queries (UNION, INTERSECT, EXCEPT)

Set operations can be applied to queries, even on the top level. Thus

SELECT name, ’big’ AS size FROM countries WHERE population >= 50000000

UNION

SELECT name, ’small’ AS size FROM countries WHERE population < 50000000

shows the populations of countries just as big or small.
NOTE: In one of the course assignments, this trick can be used instead of a

CASE expression, which is a ”non-relational” way of producing the same effect
:-)

UNION, INTERSECT, EXCEPT correspond to the set operations ∪,∩,−
introduced in Chapter 2. Thus they can only be applied to tables ”of the same
type”, i.e. tuples with the same number of elements of the compatible types.
The attribute names, however, need not match: it is meaningful to write

SELECT capital FROM Countries

UNION

SELECT name FROM Countries

5.5 Query usage and semantics: more complex queries

This section covers the part of SQL presented on Lecture 6.
The full form of SELECT queries is, as specified in the grammar,

WITH localdefinitions -- give names to auxiliary queries

SELECT attributes

FROM tables

WHERE condition

GROUP BY attributes -- divide the table to groups

HAVING condition -- conditions on the groups

ORDER BY attributes -- order the table in a desired way

5.5.1 Local definitions (WITH)

Local definitions (WITH clauses) are a simple shorthand mechanism for
queries. Thus

WITH

EuroCountries AS (

SELECT *

FROM countries

WHERE currency = ’EuroCountries’

)

SELECT *

FROM EuroCountries A, EuroCountries B

WHERE ...
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is a way to avoid the duplication of the query selecting the countries using
the Euro as their currency.

5.5.2 Sorting (ORDER BY)

Sorting (ORDER BY) lists a set of attributes considered in lexicographical
order. The direction of sorting can be specified for each attribute as DESC
or ASC, where ASC is the default. Thus the following query sorts countries
primarily by the currency in ascending order, secondarily by size in descending
order:

SELECT currency, name, population

FROM Countries

ORDER BY currency, population DESC

ORDER BY is usually presented as a last field of a SELECT group. But it can
also be appended to a query formed by a set-theoretic operation:

(SELECT name, ’big’ AS size FROM countries WHERE population >= 50000000

UNION

SELECT name, ’small’ AS size FROM countries WHERE population >= 50000000

) ORDER BY size, name

shows first all big countries in alphabetical order, then all small ones.

5.5.3 Grouping (GROUP BY) and group conditions (HAVING)

Applying GROUP BY a to a table R forms a new table, where a is the key.
For instance, GROUP BY currency forms a table of currencies. But what are the
other attributes? The original attributes of R won’t do, because each of them
may appear many times. For instance, there are many EUR countries. So what
is the use of this construction?

The full truth about GROUP BY can be seen only by looking at the SELECT
line above it. On this line, only the following attributes of R may appear:
• the grouping attribute a itself
• aggregation functions on the other attributes

In other words, the new relation has these aggregation functions as its non-key
attributes. Here is an example:

SELECT currency, COUNT(name)

FROM Countries

GROUP BY currency

currency | count

----------+-------

XCD | 8

ETB | 1

HUF | 1

...
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Now, most rows in this table will have count 1. We may be interested on only
those currencies that are used by more than one country. The standard way of
doing this is by a subquery:

SELECT *

FROM (

SELECT currency, COUNT(name) AS number

FROM Countries

GROUP BY currency) AS C

WHERE number > 1

This shows clearly that GROUP BY really forms a table. But SQL also provides
a shorthand way of expressing conditions on the groups (i.e. the rows of the
relation formed by GROUP BY): HAVING:

SELECT currency, COUNT(name)

FROM Countries

GROUP BY currency

HAVING count(name) > 1

If you want to order this from the biggest to the smallest count, just add the
line

ORDER BY COUNT(name) DESC

currency | count

----------+-------

EUR | 35

USD | 17

XOF | 8

...

The other aggregation functions (SUM, AVG, MAX, MIN) work in the same
way. The grouped table can have more than one of them:

SELECT currency, COUNT(name), AVG(population)

FROM countries

GROUP BY currency

As a final subtlety: the relation formed by GROUP BY also contains the ag-
gregations used in the HAVING clause or the ORDER BY clause:

SELECT currency, avg(population)

FROM Countries

GROUP BY currency

HAVING count(name) > 1

SELECT currency, avg(population)
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FROM Countries

GROUP BY currency

ORDER BY count(name) DESC

From the semantic point of view, GROUP BY is thus a very complex operator,
because one has to look at many different places to see exactly what relation it
forms. We will get more clear about this when looking at relational algebra and
query compilation in Chapter 7.

5.5.4 Join operations (JOIN)

The syntax of join operations is rich, as there are 24 different join operations:

table ::= -- 24 = 8+8+8

tablename

| table jointype JOIN table ON condition -- 8

| table jointype JOIN table USING (attribute+) -- 8

| table NATURAL jointype JOIN table -- 8

jointype ::= -- 8 = 6+2

LEFT|RIGHT|FULL OUTER? -- 6 = 3*2

| INNER? -- 2

In addition, cartesian product itself is a kind of a join. It is also called CROSS
JOIN, but we will use the ordinary notation with commas instead.

Luckily, the JOINs have a compositional meaning. INNER is the simplest
join type, and the keyword can be omitted without change of meaning. This
JOIN with the ON condition gives the purest form of theta join:

FROM table JOIN table ON condition

is equivalent to

FROM table,table

WHERE condition

The condition is typically looking for attributes with equal values in the two
tables. With good luck (or design) such attributes have the same name, and
one can write

L JOIN R USING (a,b)

as a shorthand for

L JOIN R ON L.a = R.a AND L.b = R.b

well... almost, since when JOIN is used with ON, it repeats the values of a an
b from both tables, like cartesian product does.

An extreme case is NATURAL JOIN, where no conditions are needed. It is
equivalent to
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L JOIN R USING (a,b,c,...)

which lists all common attributes of L and R.
Cross join, inner joins, and natural join only include tuples where the join

attribute exists in both tables. Outer joins can fill up from either side. Thus
left outer join includes all tuples from L, and right outer join from R.

Here are some examples of inner and outer joins:

L

a | b

----+----

11 | 21

12 | 22

R

a | c

----+----

12 | 32

13 | 33

L cross join R

a | b | a | c

----+----+----+----

11 | 21 | 12 | 32

11 | 21 | 13 | 33

12 | 22 | 12 | 32

12 | 22 | 13 | 33

L inner join R on L.a = R.a ;

a | b | a | c

----+----+----+----

12 | 22 | 12 | 32

L natural join R

a | b | c

----+----+----

12 | 22 | 32

L inner join R using (a)

a | b | c

----+----+----

12 | 22 | 32

L full outer join R using (a)

a | b | c

----+----+----
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11 | 21 |

12 | 22 | 32

13 | | 33

L left outer join R using (a)

a | b | c

----+----+----

11 | 21 |

12 | 22 | 32

L right outer join R using (a)

a | b | c

----+----+----

12 | 22 | 32

13 | | 33

5.5.5 Pattern matching (LIKE)

The condition s LIKE p compares the string s with the pattern p. The pattern
can use wildcards (for any character) and % (for any substring). Thus

WHERE name LIKE ’%en’

is satisfied by all countries whose name ends with ”en”, e.g. Sweden.

5.6 Views (CREATE VIEW)

A view is like a constant defined in a WITH clause, but its definition is global.
Views are used for ”frequently asked queries”. They are built each time from
the underlying tables, and hence redundancy is not an issue.

5.7 SQL pitfalls

Here we list some things that do not feel quite logical in SQL design, or whose
semantics may feel surprising.

Tables vs. queries

In relational algebra, a query is always an expression for a table (i.e. relation).
In SQL, however, there are subtle syntax differences:
• A bare table name is not a valid query. A bare FROM part is not

a valid query either. The shortest way to list all tuples of a table is
SELECT * FROM table

• Set operations can only combine queries, not table names.
• Join operations can only combine table names, not queries.
• A cartesian product in a FROM clause can mix queries and table names,

but...
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• When a query is used in a FROM clause, it must be given an AS name.
• A WITH clause can only define constants for queries, not for table expres-

sions.

Renaming syntax

Renaming is made with the AS operator, which however has slightly different
uses:
• In WITH clauses, the name is before the definition: name AS (query).
• In SELECT parts, the name is after the definition: expression AS name.
• In FROM parts, the name is after the definition but may be omitted:
table AS? name.

Cartesian products

The bare cartesian product from a FROM clause can be a huge table, since
the sizes are multiplied. With the same logic, if the product contains an empty
table, its size is 0 as well. Then it does not matter that the empty table might
be ”irrelevant”:

SELECT A.a FROM A, Empty

results in an empty table.

NULL values and three-valued logic

Because of NULL values, SQL follows a three-valued logic: TRUE, FALSE,
UNKNOWN. The truth tables as such are natural. But the way they are used
in e.g WHERE clauses is good to keep in mind. Recalling that a comparison
with NULL results in UNKNOWN, and that WHERE clauses only select TRUE
instances, the query

SELECT ...

FROM ...

WHERE v = v

gives no results for tuples where v is NULL. The same concerns

SELECT ...

FROM ...

WHERE v < 10 OR v >= 10

Hence is v is NULL, it cannot even be assumed that it has the same value in
all occurrences.

Another example, given in

https://www.simple-talk.com/sql/t-sql-programming/ten-common-sql-
programming-mistakes/
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as the first one among the ”Ten common SQL mistakes”, involves NOT IN: if
v is NULL, then

u NOT IN (1,2,v)

which means

NOT (u = 1 OR u = 2 OR u = v)

evaluates in UNKNOWN. Hence it can be useless as a test.

Set operations are set operations

Being a set means that duplicates don’t count. This is what holds of relational
algebra, but SQL is usually about multisets, so that duplicates do count. How-
ever, the set operations UNION, INTERSECT, EXCEPT do remove duplicates!
Hence

SELECT * FROM table

UNION

SELECT * FROM table

has the same effect as

SELECT DISTINCT * FROM table

5.8 SQL in the Query Converter*

The Query Converter has an SQL parser and interpreter, which works much the
same way as the PostgreSQL shell. Thus you can give SQL commands in the
qconv shell, and the database is queried and updated accordingly. You can also
see the relational algebra translations of your queries. This is in fact the only
reason to use qconv as an SQL interpreter rather than PostgreSQL.

Only a part of SQL is currently recognized by qconv. The interpreter may
moreover be buggy. The database is only built in memory, not stored on a disk.
Thus you should store your work in an SQL source file. Such files can be read
with the i (”import”) command, for instance,

> i countries.sql

which uses the file

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-
converter/countries.sql
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6 Table modification and triggers

Here we take a deeper look at inserts, updates, and deletions, in the presence of
constraints. The integrity constraints of the database may restrict these actions
or even prohibit them. An important problem is that when one piece of data
is changed, some others may need to be changed as well. For instance, when
a row is deleted or updated, how should this affect other rows that reference it
as foreign key? Some of these things can be guaranteed by constraints in basic
SQL. But some things need more expressive power. For example, when making
a bank transfer, money should not only be taken from one account, but the same
amount must be added to the other account. For situations like this, DBMSs
support triggers, which are programs that do many SQL actions at once. The
concepts discussed in this chapter are also called active elements, because they
affect the way in which the database reacts to actions. This is in contrast to the
data itself (the rows in the tables), which is ”passive”.

6.1 Active element hierarchy

Active elements can be defined on different levels, from the most local to the
most global:
• Types in CREATE TABLE definitions control the atomic values of each

attribute without reference to anything else.
• Inline constraints in CREATE TABLE definitions also control the atomic

values of each attribute, but may refer to some other things.
• Constraints in CREATE TABLE definitions control tuples or other sets

of attribute, with conditions referring to things inside the table (except
for FOREIGN KEY).

• Assertions, which are top-level SQL statements, state conditions about
the whole database.

• Triggers, which are top-level SQL statements, can perform actions on the
whole database, using the DBMS.

• Host program code, in the embedded SQL case, can perform actions
on the whole database, using both the DBMS and the host program.

It is often a good practice to state conditions on as local a level as possible,
because they are then available in all wider contexts. However, there are three
major exceptions:
• Types such as CHAR(n) may seem to control the length of strings, but

they are not as accurate as CHECK constraints. For instance, CHAR(3)
only checks the maximum length but not the exact length.

• Inline constraints cannot be changed afterwards by ALTER TABLE. Hence
it can be better to use tuple-level named constraints.

• Assertions are disabled in many DBMSs (e.g. PostgreSQL, Oracle) be-
cause they can be inefficient. Therefore one should use triggers to mimick
assertions. This is what we do in this course.
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6.2 Referential constraints and policies

A referential constraint (FOREIGN KEY ... REFERENCES) means that, when
a value is used in the referring table, it must exist in the referenced table.
But what happens if the value is deleted or changed in the referenced table
afterwards? This is what policies are for. The possible policies are CASCADE
and SET NULL, to override the default behaviour which is to reject the change.

Assume we have a table of bank accounts:

CREATE TABLE Accounts (

number TEXT PRIMARY KEY,

holder TEXT,

balance INT

)

Let us then add a table with transfers, with foreign keys referencing the first
table:

CREATE TABLE Transfers (

sender TEXT REFERENCES Accounts(number),

recipient TEXT REFERENCES Accounts(number),

amount INT

)

What should we do with Transfers if a foreign key disappears i.e. if an account
number is removed from Accounts? There are three alternatives:
• (default) reject the deletion from Accounts because of the reference in

Transfers,
• CASCADE, i.e. also delete the transfers that reference the deleted ac-

count,
• SET NULL, i.e. keep the transfers but set the sender or recipient number

to NULL
One of the last two actions can be defined to override the default, but using the
following syntax:

CREATE TABLE Transfers (

sender TEXT REFERENCES Accounts(number)

ON UPDATE CASCADE ON DELETE SET NULL,

recipient TEXT REFERENCES Accounts(number),

amount INT

)

ON UPDATE CASCADE means that if account number is changed in Accounts,
it is also changed in Transfers. ON DELETE SET NULL means that if account
number is deleted from Accounts, it is changed to NULL in Transfers.

Notice. These policies are probably not the best way to handle accounts
and transfers. It probably makes more sense to introduce dates and times, so
that rows referring to accounts existing at a certain time need never be changed
later.
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6.3 CHECK constraints

CHECK constraints, which can be inlined or separate, are like invariants in
programming. Here is a table definition with two attribute-level constraints,
one inlined, the other named and separate:

-- specify a format for account numbers: four characters,-, and at least two characters

-- more could be said to limit the characters to digits

CREATE TABLE Accounts (

number TEXT PRIMARY KEY CHECK (number LIKE ’____-%--’),

holder TEXT,

balance INT,

CONSTRAINT positive_balance CHECK (balance >= 0)

)

Here we have a table-level constraint referring to two attributes:

-- check that money may not be transferred from an account to itself

CREATE TABLE Transfers (

sender TEXT REFERENCES Accounts(number) ON DELETE SET NULL,

recipient TEXT REFERENCES Accounts(number),

amount INT,

CONSTRAINT not_to_self CHECK (recipient <> sender)

) ;

Here is a ”constraint” that is not possible in Transfers, trying to say that
the balance cannot be exceeded in a transfer:

CONSTRAINT too_big_transfer CHECK (amount <= balance)

The reason is that the Transfers table cannot refer to the Accounts table (other
than in FOREIGN KEY constraints). However, in this case, this is also un-
necessary to state: because of the positive balance constraint in Accounts, a
transfer exceeding the sender’s balance would be automatically blocked.

Here is another ”constraints” for Accounts, trying to set a maximum for the
money in the bank:

CONSTRAINT too_much_money_in_bank CHECK (sum(balance) < 1000000)

The problem is that constraints may not use aggregation functions (here, sum(balance)),
because they are about tuples, not about whole tables. Such a constraint could
be stated in an assertion, but these are not allowed in PostgreSQL even though
they are standard SQL. We will however be able to state this in a trigger, as we
will see below.
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6.4 ALTER TABLE

A table once created can be changed later with an ALTER TABLE statement. The
most important ways to alter a table are:
• ADD COLUMN with the usual syntax (attribute, type, inline constraints).

The new column contains NULL values, unless some other default is speci-
fied.

• DROP COLUMN with the attribute name
• ADD CONSTRAINT with the usual constraint syntax. Rejected if the already

existing table violates the constraint.
• DROP CONSTRAINT with a named constraint

6.5 Triggers

Triggers in PostgreSQL are written in the language PL/PGSQL which is almost
standard SQL, with an exception:
• the trigger body can only be a function call, and the function is written

separately
Here is the part of the syntax that we will need:

functiondefinition ::=

CREATE FUNCTION functionname() RETURNS TRIGGER AS $$

BEGIN

* statement

END

$$ LANGUAGE ’plpgsql’

;

triggerdefinition ::=

CREATE TRIGGER triggernane

whentriggered

FOR EACH ROW|STATEMENT

EXECUTE PROCEDURE functionname

;

whentriggered ::=

BEFORE|AFTER events ON tablename

| INSTEAD OF events ON viewname

events ::=

INSERT | UPDATE | DELETE # can be combined with OR

statement ::=

IF (condition) THEN statement END IF ;

| RAISE EXCEPTION ’message’ ;

| sqlstatement ;

Comments:
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• The statements may refer to NEW.attribute (in case of INSERT and UP-
DATE) and OLD.attribute (in case of UPDATE and DELETE).

• FOR EACH ROW means that the trigger is executed for each new row
affected by an INSERT, UPDATE, or DELETEx statement.

• FOR EACH STATEMENT means that the trigger is executed once for
the whole statement.

• A trigger is an atomic transaction, which either succeeds or fails totally
(see Chapter 9 for more details).

Let us consider some examples. The first one is a trigger that update bal-
ances in Accounts after each inserted Transfer. In PostgreSQL, we first have to
define a function that does the job by CREATE FUNCTION. After that, we create
the trigger itself by CREATE TRIGGER.

CREATE FUNCTION make_transfer() RETURNS TRIGGER AS $$

BEGIN

UPDATE Accounts

SET balance = balance - NEW.amount

WHERE number = NEW.sender ;

UPDATE Accounts

SET balance = balance + NEW.amount

WHERE number = NEW.recipient ;

END

$$ LANGUAGE ’plpgsql’ ;

CREATE TRIGGER mkTransfer

AFTER INSERT ON Transfers

FOR EACH ROW

EXECUTE PROCEDURE make_transfer() ;

The function make transfer() could also contain checks of conditions, be-
tween the BEGIN line and the first UPDATE:

IF (NEW.sender = NEW.recipient)

THEN RAISE EXCEPTION ’cannot transfer to oneself’ ;

END IF ;

IF ((SELECT balance FROM Accounts WHERE number = NEW.sender) < NEW.amount)

THEN RAISE EXCEPTION ’cannot create negative balance’ ;

END IF ;

”\noindent“ However, both of these things can be already guaranteed by
constraints in the affected tables. Then they need not be checked in the trigger.
This is clearly better that putting them into triggers, because we could easily
forget them!

The second example is limiting the maximum total balance of the bank.
This trigger doesn’t change anything, and could therefore be defined as an
ASSERTION, if they were permitted.
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CREATE OR REPLACE FUNCTION maxBalance() RETURNS TRIGGER AS $$

BEGIN

IF ((SELECT sum(balance) FROM Accounts) > 16000)

THEN RAISE EXCEPTION ’too much money in the bank’ ;

END IF ;

END

$$ LANGUAGE ’plpgsql’ ;

CREATE TRIGGER max_balance

AFTER INSERT OR UPDATE ON Accounts

FOR EACH STATEMENT

EXECUTE PROCEDURE maxBalance() ;

The combinations of BEFORE/AFTER, OLD/NEW, and perhaps ROW/STATEMENT
are a bit tricky to understand. The best way to understand them is to test dif-
ferent versions in PostgreSQL, monitor effects, and try to understand the error
messages.

Triggers can also be defined on views. Then the trigger is executed INSTEAD

OF updates, inserts, and deletions.
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7 Relational algebra and query compilation

Relational algebra is a mathematical query language. It is much simpler than
SQL, as it has only a few operations, each denoted by Greek letters or mathe-
matical symbols. Being so simple, relational algebra is more difficult to use for
complex queries than SQL. But for the same reason, it is easier to analyse and
optimize. Relational algebra is therefore useful as an intermediate language in a
DBMS. SQL queries can be first translated to relational algebra, which is opti-
mized before it is executed. This chapter will tell the basics about this translation
and some query optimizations.

7.1 The compiler pipeline

When you write an SQL query in PostgreSQL or some other DBMS, the follow-
ing things happen:

1. Lexing: the query string is analysed into a sequence of words.
2. Parsing: the sequence of words is analysed into a syntax tree.
3. Type checking: the syntax tree is checked for semantic well-formedness,

for instance that you are not trying to multiply strings but only numbers,
and that the names of tables and attributes actually exist in the database.

4. Logical query plan generation: the SQL syntax tree is converted to a
logical query plan, which is relational algebra expression (actually, its
syntax tree).

5. Optimization: the relational algebra expression is converted to another
relational algebra expression, which is more efficient to execute.

6. Physical query plan generation: the optimized relational algebra ex-
pression is converted to a physical query plan, which is a sequence of
algorithm calls.

7. Query execution: the physical query plan is executed to produce the
result of the query.

We will in this chapter focus on the logical query plan generation. We will
also say a few words about optimization, which is perhaps the clearest practical
reason for the use of relational algebra.

7.2 Relational algebra

Relational algebra is in principle at least as powerful as SQL as a query language,
because all SQL queries can be translated to it. Yet the language is much
smaller. Its grammar is shown in Figure 5.

As this is the ”official” relational algebra (from the textbook), a couple of
SQL constructs cannot however be treated: sorting in DESC order and aggre-
gation of DISTINCT values. Both of them would be easy to add. More impo-
ratantly, this language extends the algebra of Chapter 2 in several ways. The
most important extension is that it operates on multisets (turned to sets by
δ,∪,∩) and recognizes order (controlled by τ).
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relation ::=

relname name of relation (can be used alone)

| σcondition relation selection (sigma) WHERE

| πprojection+ relation projection (pi) SELECT

| ρrelname (attribute+)? relation renaming (rho) AS

| γattribute*,aggregationexp+ relation

grouping (gamma) GROUP BY, HAVING

| τexpression+ relation sorting (tau) ORDER BY

| δ relation removing duplicates (delta) DISTINCT

| relation × relation cartesian product FROM, CROSS JOIN

| relation ∪ relation union UNION

| relation ∩ relation intersection INTERSECT

| relation − relation difference EXCEPT

| relation ./ relation NATURAL JOIN

| relation ./condition relation theta join JOIN ON

| relation ./attribute+ relation INNER JOIN

| relation ./oattribute+ relation FULL OUTER JOIN

| relation ./oLattribute+ relation LEFT OUTER JOIN

| relation ./oRattribute+ relation RIGHT OUTER JOIN

projection ::=

expression expression, can be just an attribute

| expression → attribute rename projected expression AS

aggregationexp ::=

aggregation( *|attribute ) without renaming

| aggregation( *|attribute ) → attribute with renaming AS

expression, condition, aggregation, attribute as in SQL, Figure 4

Figure 5: A grammar of relational algebra. Operator names and other explana-
tions in boldface. Corresponding SQL keywords in CAPITAL TYPEWRITER.
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7.3 From SQL to relational algebra

The translation from SQL to relational algebra is usually straightforward. It
is mostly compositional in the sense each SQL construct has a determinate
algebra construct that it translates to. For expressions, conditions, aggregations,
and attributes, it is trivial, since they need not be changed at all. Figure 5 shows
the correspondences as a kind of a dictionary, without exactly specifying how
the syntax is translated.

The most problematic cases to deal with are
• grouping expressions
• subqueries in certain positions, e.g. conditions

We will skip subqueries and say more about the grouping expressions. But let
us start with the straightforward cases.

7.3.1 Basic queries

As seen in Section 5.4, the most common SQL query form

SELECT projections

FROM table,...,table

WHERE condition

corresponds to the relational algebra expression

πprojectionsσcondition(table× . . .× table)

But notice, first of all, that names of relations can themselves be used as alge-
braic queries. Thus we translate

SELECT * FROM Countries

=⇒ Countries

SELECT * FROM Countries WHERE name=’UK’

=⇒ σname=′UK′Countries

In general, SELECT * does not add anything to the algebra translation. However,
there is a subtle exception with grouping queries, to be discussed later.

If the SELECT field contains attributes or expressions, these are copied into
the same expressions under the π operator. When the field is given another
name by AS, the arrow symbol is used in algebra:

SELECT capital, area/1000 FROM Countries WHERE name=’UK’

=⇒ πcapital,area/1000σname=′UK′Countries

SELECT name AS country, population/area AS density FROM Countries

=⇒ πname→country,population/area→densityCountries

The renaming of attributes could also be done with the ρ operator:
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ρC(country,density)πname,population/areaCountries

is a more complicated and, in particular, less compositional solution, because
it has to inspect the SELECT field for input to two different algebra operations.
Moreover, it must invent C as a dummy name for the renamed table. However,
ρ is the way to go when names are given to tables in the FROM field. This
happens in particular when a cartesian product is made with two copies of the
same table:

SELECT A.name, B.capital

FROM Countries AS A, Countries AS B

WHERE A.name = B.capital

=⇒
πA.name,B.capitalσA.name = B.capital(ρACountries× ρBCountries)

No renaming of attributes takes place in this case.
Set-theoretical operations and joins work in the same way as in SQL. No-

tice once again that the SQL distinction between ”queries” and ”tables” is not
present in algebra, but everything is relations. This means that all operations
work with all kinds of relation arguments, unlike in SQL (see Section 5.7).

7.3.2 Grouping and aggregation

As we saw in Section 5.5.3, GROUP BY a (or any sequence of attributes) to a
table R forms a new table, where a is the key. The other attributes can be found
in two places: the SELECT line above and the HAVING and ORDER BY lines
below. All of these attributes must be aggregation function applications.

In relational algebra, the γ operator is an explicit name for this relation,
collecting all information in one place. Thus

SELECT currency, COUNT(name)

FROM Countries

GROUP BY currency

=⇒ γcurrency,COUNT (name)Countries

SELECT currency, AVG(population)

FROM Countries

GROUP BY currency

HAVING COUNT(name) > 1

=⇒
πcurrency,AV GpopulationσCOUNT (name)>1

γcurrency,AV G(population),COUNT (name)Countries
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Thus the HAVING clause itself becomes an ordinary σ. Notice that, since
SELECT does not show the COUNT(name) attribute, a projection must be
applied on top.

Here is an example with ORDER BY, which is translated to a τ always
applied as the last step:

SELECT currency, AVG(population)

FROM Countries

GROUP BY currency

ORDER BY COUNT(name)

=⇒
τCOUNT (name)πcurrency,AV Gpopulation

γcurrency,AV G(population),COUNT (name)Countries

The ”official” version of relational algebra (as in the book) performs the
renaming of attributes under SELECT γ itself:

SELECT currency, COUNT(name) AS users

FROM Countries

GROUP BY currency

=⇒ γcurrency,COUNT (name)→usersCountries

However, a more compositional (and to our mind more intuitive) way is do this
in a separate π corresponding to the SELECT:

πcurrency,COUNT (name)→usersγcurrency,COUNT (name)Countries

The official notation actually always involves a renaming, even if it is to the
aggregation expression to itself:

γcurrency,COUNT (name)→COUNT (name)Countries

This is of course semantically justified because COUNT(name) on the right
of the arrow is not an expression but an attribute (a string without syntactic
structure). However, the official notation is not consistent in this, since it does
not require corresponding renaming in the π operator.

In addition to GROUP BY, γ must be used whenever an aggregation appears
in the SELECT part. This can be understood as grouping by 0 attributes, which
means that there is only one group. Thus we translate

SELECT COUNT(name) FROM Countries

=⇒ γCOUNT (name)Countries

We conclude the grouping section with a surprising example:
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SELECT *

FROM Countries

GROUP BY name

HAVING count(name) > 0

Surprisingly, the result is the whole Countries table (because the HAVING con-
dition is always true), without a column for count(name). This may be a bug in
PostgreSQL. Otherwise it is a counterexample to the rule that SELECT * does
not change the relation in any way.

7.3.3 Sorting and duplicate removal

We have already seen a sorting with groupings. Here is a simpler example:

SELECT name, capital FROM Countries ORDER BY name

=⇒ τnameπname,capitalCountries

And here is an example of duplicate removal:

SELECT DISTINCT currency FROM Countries

=⇒ δ(πcurrencyCountries)

(The parentheses are optional.)

7.4 Query optimization

7.4.1 Algebraic laws

Set-theoretic operations obey a large number of laws: associativity, commuta-
tivity, idempotence, etc. Many, but not all, of these laws also work for multisets.
The laws generate a potentially infinite number of equivalent expressions for a
query. Query optimization tries to find the best of those.

7.4.2 Example: pushing conditions in cartesian products

Cartesian products generate huge tables, but only fractions of them usually show
up in the final result. How can we avoid building these tables in intermediate
stages? One of the most powerful techniques is pushing conditions into products,
in accordance with the following equivalence:

σC(R× S) = σCrs(σCrR× σCsS)

where C is a conjunction (AND) of conditions and
• Cr is that part of C where all attributes can be found in R
• Cs is that part of C where all attributes can be found in S
• Crs is the rest of the attributes in C

Here is an example:
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SELECT * FROM countries, currencies

WHERE code = ’EUR’ AND continent = ’EU’ AND code = currency

Direct translation:

σcode=”EUR”ANDcontinent=”EU”ANDcode=currency(countries×currencies)

Optimized translation:

σcode=currency

(σcontinent=”EU”countries× σcode=”EUR”currencies)

7.5 Relational algebra in the Query Converter*

As shown in Section 5.8, qconv works as an SQL interpreter. The interpretation
is performed via translation to relational algebra close to the textbook style. The
notation is actually LaTeX code, and the code shown in these notes is generated
with qconv (possibly with some post-editing).

The SQL interpreter of qconv shows relational algebra expressions in addi-
tion to the results. But one can also convert expressions without interpreting
them, by the a command:

> a SELECT * FROM countries WHERE continent = ’EU’

The source files are available in

https://github.com/GrammaticalFramework/gf-contrib/blob/master/query-
converter/

The files of interest are:
• MinSQL.bnf, the grammar of SQL, from which the lexer, parser, and

printer are generated,
• RelAlgebra.bnf, the grammar of relational algebra, from which the lexer,

parser, and printer are generated,
• SQLCompiler.hs, the translator from SQL to relational algebra,
• Algebra.hs, the conversion of logical to algorithmic (”physical”) query

plans,
• Relation.hs, the code for executing the physical query plans,
• OptimizeAlgebra.hs, some optimizations of relational algebra.
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8 SQL in software applications

End user programs are often built by combining SQL and a general purpose
programming language. This is called embedding, and the general purpose
language is called a host language. In this lecture, we we look at how SQL is
embedded in Java. We will also cover some pitfalls in embedding. For instance
SQL injection is a security hole where an end user can include SQL code in
the data that she is asked to give. In one famous example, the name of a student
includes a piece of code that deletes all data from a student database. To round
off, we will look at the highest level of database access from the human point of
view: natural language queries.

8.1 SQL as a part of a bigger program

SQL was once meant to be a high-level query language, easy to learn for non-
progammars. However, direct access to SQL (e.g. via the PostgreSQL shell)
can be both too demanding and too powerful. Most database access by end
users hence takes place via more high-level interfaces such as web forms. People
use them for doing bank transfers and booking train tickets. Then the host
language in which SQL is embedded provides GUIs and other means that makes
data access easier. Database are also accessed by programs that analyse them,
for instance to collect statistics. Then the host language provides computation
methods that are more powerful than those available in SQL.

8.2 A minimal JDBC program*

Java is a verbose language, and accessing a database is just one of the cases
that requires a lot of wrapper code. Figure 6 is the smallest complete program
we could figure out that does something meaningful. The user writes a country
name and the program returns the capital. After this, a new prompt for a query
is displayed. For example:

> Sweden

Stockholm

>

The progam is very rough in the sense that it does not even recover from errors
or terminate gracefully. Thus the only way to terminate it is by ”control-C”.
A more decent program is shown in the course material (Assignment 5) - a
template from which Figure 6 is a stripped-down version.

The SQL-specific lines are marked *.
• The first one loads the java.sql JDBC functionalities.
• The second one, in the main method, loads a PostgreSQL driver class.
• The next three ones define the database url, username, and password.
• Then the connection is opened by these parameters. The rest of the main

method is setting the user inaction loop as a ”console”.
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import java.sql.*; // JDBC functionalities *

import java.io.*; // Reading user input

public class Capital

{

public static void main(String[] args) throws Exception

{

Class.forName("org.postgresql.Driver") ; // load the driver class *

String url = "jdbc:postgresql://ate.ita.chalmers.se/" ; // database url *

String username = "tda357_XXX" ; // your username *

String password = "XXXXXX" ; // your password *

Connection conn = DriverManager.getConnection(url, username, password);//connect to db *

Console console = System.console(); // create console for interaction

while(true) { // loop forever

String country = console.readLine("> ") ; // print > as prompt and read query

getCapital(conn, country) ; // execute the query

}

}

static void getCapital(Connection conn, String country) throws SQLException // *

{

Statement st = conn.createStatement(); // start new statement *

ResultSet rs = // get the query results *

st.executeQuery("SELECT capital FROM Countries WHERE name = ’" + country + "’") ; *

while (rs.next()) // loop through all results *

System.out.println(rs.getString(2)) ; // print column 2 with newline *

rs.close(); // get ready for new query *

st.close(); // get ready for new statement *

}

}

Figure 6: A minimal JDBC program, answering questions ”what is the capital
of this country”. It prints a prompt > , reads a country name, prints its capital,
and waits for the next query. It does not yet quit nicely or catch exceptions
properly. The SQL-specific lines are marked with *.
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• The method getCapital that sends a query and displays the results can
throw an exception (a better method would catch it). This exception
happens for instance when the SQL query has a syntax error.

• The actual work takes place in the body of getCapital:
– The first thing is to create a Statement object, which has a method

for executing a query.
– Executing the query returns a ResultSet, which is an iterator for all

the results.
– We iterate through the rows with a while loop on rs.next(), which

returns False when all rows have been scanned.
– For each row, we print column 2, which holds the capital.
– The ResultSet object rs enables us to getString for the column.
– At the end, we close the result set rs and the statement st nicely to

get ready for the next query.
The rest of the code is ordinary Java. For the database-specific parts, excel-

lent Javadoc documentation can be found for googling for the APIs with class
and method names. The only tricky thing is perhaps the concepts Connection,
Statement, and ResultSet:
• A connection is opened just in the beginning, with URL, username, and

password. This is much like starting the psql program in a Unix shell.
• A statement is opened once for any SQL statement to be executed, be

it a query or an update, and insert, or a delete.
• A result set is obtained when a query is executed. Other statements

don’t return result sets, but just modify the database.
It is important to know that the result set is overwritten by each query, so you
cannot collect many of them without ”saving” them e.g. with for loops.

8.3 Building queries and updates from input data*

When building a query, it is obviously important to get the spaces and quotes in
right positions! A safer way to build a query is to use a prepared statement.
It has question marks for the arguments to be inserted, so we don’t need to care
about spaces and quotes. But we do need to select the type of each argument,
with setString(Arg,Val), setInt(Arg,Val), etc.

static void getCapital(Connection conn, String country) throws SQLException

{

PreparedStatement st =

conn.prepareStatement("SELECT capital FROM Countries WHERE name = ?") ;

st.setString(1,country) ;

ResultSet rs = st.executeQuery() ;

if (rs.next())

System.out.println(rs.getString(1)) ;

rs.close() ;

st.close() ;

}
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Modifications - inserts, updates, and deletes - are made with statements in
a similar way as queries. In JDBC, they are all called updates. A Statement
is needed for them as well. Here is an example of registering a mountain with
its name, continent, and height.

// user input example: Kebnekaise Europe 2111

static void addMountain(Connection conn, String name, String continent, String height)

throws SQLException

{

PreparedStatement st =

conn.prepareStatement("INSERT INTO Mountains VALUES (?,?,?)") ;

st.setString(1,name) ;

st.setString(2,continent) ;

st.setInt(3,Integer.parseInt(height)) ;

st.executeUpdate() ;

st.close() ;

}

Now, how to divide the work between SQL and Java? As a guiding principle,

Put as much of your program in the SQL query as possible.

In a more complex program (as we will see shortly), one can send several queries
and collect their results from result sets, then combine the answer with some Java
programming. But this is not using SQL’s capacity to the full:

• You miss the optimizations that SQL provides, and have to reinvent them man-
ually in your code.

• You increase the network traffic.
Just think about the ”pushing conditions” example from Section 7.4.2.

SELECT * FROM countries, currencies

WHERE code = ’EUR’ AND continent = ’EU’ AND code = currency

If you just query the first line with SQL and do the WHERE part in Java, you may
have to transfer thousands of times of more rows that you moreover have to inspect
than when doing everything in SQL.

8.4 SQL injection

An SQL injection is a hostile attack where the input data contains SQL statements.
Such injections are possible if input data is pasted with SQL parts in a simple-minded
way. Here are two examples, modified from

https://www.owasp.org/index.php/SQL Injection

which is an excellent source on security attacks in general, and how to prevent them.
The first injection is in a system where you can ask information about yourself by

entering your name. If you enter the name John, it builds and executes the query

SELECT * FROM Persons

WHERE name = ’John’

If you enter the name John’ OR 0=0-- it builds the query
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SELECT * FROM Persons

WHERE name = ’John’ OR 0=0--’

which shows all information about all users!
One can also change information by SQL injection. If you enter the name “John’;DROP

TABLE Persons– it builds the statements

SELECT * FROM Persons

WHERE name = ’John’;

DROP TABLE Persons--’

which deletes all person information.
Now, if you use JDBC, the latter injection is not so easy, because you cannot

execute modifications with executeQuery(). But you can do the such a thing if the
statement asks you to insert your name.

A better help prpvided by JDBC is to use preparedStatement with ? variables
instead of pasting in strings with Java’s +. The implementation of preparedStatement
performs a proper quoting of the values. Thus the first example becomes rather like

SELECT * FROM Persons

WHERE name = ’John’’ OR 0=0;--’

where the first single quote is escaped and the whole sting is hence included in the
name.

8.5 The ultimate query language?*

SQL was once meant to be a high-level query language, easy to learn for non-progammars.
In some respects, it is like COBOL: very verbose with English-like keywords, and a
syntax that with good luck reads like English sentences: select names from countries
where the continent is Europe. Real natural language queries of course have a richer
syntax and may require effort from the compiler to execute. Here are some examples
of syntactic forms easily interpretable in SQL:

what is the capital of Sweden

SELECT capital FROM countries WHERE name=’Sweden’

which countries have EUR as currency

SELECT name FROM Countries WHERE currency=’EUR’

which countries have a population under 1000000

SELECT name FROM Countries WHERE population<1000000

how many countries have a population under 1000000

SELECT count(*) FROM Countries WHERE population<1000000

show everything about all countries where the population is under 1000000

SELECT * FROM Countries WHERE population<1000000

show the country names and currency names for all countries and currencies
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such that the continent is Europe and currency is the currency code

SELECT Countries.name, Currencies.name FROM Countries, Currencies

WHERE continent=’Europe’ AND currency=Currencies.code

It is possible to write grammars that analyse these queries and translate them to SQL,
just like and SQL compiler translates SQL queries to relational algebra. This was in
fact a popular topic in the 1970’s and 1980’s, after the successful LUNAR system for
querying about moon stones:

http://web.stanford.edu/class/linguist289/woods.pdf

Natural language question answering is becoming popular again, in systems like Wol-
fram Alpha and IBM Watson. They are expected to give

• more fine-grained search possibilities than plain string-based search
• support for queries in speech, like in Google’s Voice Search and Apple’s Siri.
The main problems of natural language search are
• precision: without a grammar comparable to e.g. SQL grammar, it is difficult

to interpret complex queries correctly
• coverage: queries can be expressed in so many different ways that it is difficult

to have a complete grammar
• ambiguity: a query can have different interpretations, which is sometimes clear

from context (but exactly how?), sometime not:
– Please tell us quickly, Intelligent Defence System: Are the missiles coming

across the ocean or over the North Pole?
– Calculating........ Yes.

Interestingly, once we can solve these problems for one language, other languages follow
the same patterns:

vad är Sveriges huvudstad

vilka länder har EUR som valuta

vilka länder har en befolkning under 1000000

hur många länder har en befolkning under 1000000

visa allt om alla länder där befolkningen är under 1000000

visa landnamnen och valutanamnen för alla länder och valutor

där kontinenten är Europa och valutan är valutakoden

Natural language queries are in the intersection of database technology and ar-
tificial intelligence. The problem can be approached incrementally, by accumulating
technology and knowledge. Much of the research is on collecting the knowledge auto-
matically, by for instance using machine learning. This is the case in particular when
the knowledge is in unstructured form such as text. However, when the knowledge is
already in a database, the question becomes much more like query compilation.
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9 Remaining SQL topics: transactions, autho-
rization, indexes

Repeating what was said before: SQL is a huge language, and the course does not
cover all of it. This last SQL lecture is a ”smörg̊asbord” of things that have not been
covered before. They are not covered in the course assignments either, but they may
appear in the exam. Each of the topics moreover has some theoretical interest. Thus
transactions are related to concurrency, where simultaneous database accesses by
different users may create inconsistencies. Authorization is a systematic view to
the rights (read, write, etc) that different users can be given. Indexes are a way to
make queries faster, at the cost of some space and slower updates. These concepts are
introduced together with ways of reasoning about the corresponding problems.

9.1 Authorization and grant diagrams

When a user creates an SQL object (table, view, trigger, function), she becomes the
owner of the object. She can grant privileges to other users, and also revoke them.
Here is the SQL syntax for this:

statement ::=

GRANT privilege+ ON object TO user+ grantoption?

| REVOKE privilege+ ON object FROM user+ CASCADE?

| REVOKE GRANT OPTION FOR privilege ON object FROM user+ CASCADE?

| GRANT rolename TO username adminoption?

privilege ::=

SELECT | INSERT | DELETE | UPDATE | REFERENCES | ...

| ALL PRIVILEGES

object ::=

tablename (attribute+)+ | viewname (attribute+)+ | trigger | ...

user ::= username | rolename | PUBLIC

grantoption ::= WITH GRANT OPTION

adminoption ::= WITH ADMIN OPTION

Chains of granted privileges give rise to grant diagrams, which ultimately
lead to the owner. Each node consists of a username, privilege, and a tag for
ownership (**) or grant option (*). Granting a privilege creates a new node,
with an arrow from the granting privilege.

A user who has granted privileges can also revoke them. The CASCADE
option makes this affect all the nodes that are reachable only via the revoked
privilege. The default is RESTRICT, which means that a REVOKE that would
affect other nodes is rejected.

Figure 7 shows an example of a grant diagram and its evolution.
Users can be collected to roles, which can be granted and revoked privileges

together. The SQL privileges can be compared with the privileges in the Unix
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(a) (b) (c)

Figure 7: Grant diagrams, resulting from: (a) O: GRANT R TO U WITH GRANT

OPTION ; U: GRANT p TO V (b) (a) followed by O: REVOKE R FROM U (c) (a)
followed by O: REVOKE GRANT OPTION FOR R FROM U

file system, where
• privileges are ”read”, ”write”, and ”execute”
• objects are files and directories
• roles are groups

The main difference is that the privileges and objects in SQL are more fine-
grained.
Example. What privileges are needed for the following? TODO

9.2 Transactions

A transaction is a sequence of statements that is executed together. A trans-
action succeeds or fails as a whole. For instance, a bank transfer can consist of
two updates, collected to a transaction:

BEGIN ;

UPDATE Accounts

SET (balance = balance - 100) WHERE holder = ’Alice’ ;

UPDATE Accounts

SET (balance = balance + 100) WHERE holder = ’Bob’ ;

COMMIT ;

If the first update fails, for instance, because Alice has less than 100 pounds,
the whole transaction fails. We can also manually interrupt a transaction by a
ROLLBACK statement.

Individual SQL statements are automatically transactions. This includes the
execution of triggers, which we used for bank transfers in Chapter 6. Otherwise,
transactions can be created by grouping statements between BEGIN and COMMIT.

Transactions are expected to have so-called ACID properties:
• A, Atomicity: the transaction is an atomic unit that succeeds or fails as

a whole.
• C, Consistency: the transaction keeps the database consistent (i.e. pre-

serves its constraints).
• I, Isolation: parallel transactions operate independently of each other.
• D, Durability: committed transactions have persistent effect even if the

system has a failure.
Hint. The main purpose of transactions is to keep the data consistent. But a
transaction can also be faster than individual statements. For instance, if you
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want to execute thousands of INSERT statements, it can be better to make them
into one transaction.

The full syntax of starting transactions is as follows:

statement ::=

START TRANSACTION mode* | BEGIN | COMMIT | ROLLBACK

mode ::=

ISOLATION LEVEL level

| READ WRITE | READ ONLY | NOT? DEFERRABLE

level ::=

SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED

The READ WRITE and READ ONLY modes indicate what interferences are
possible. The DEFERRABLE mode means that constraints that are defined as
DEFERRABLE in CREATE TABLE statements are only checked at the end
of the transaction.

9.3 Interferences and isolation levels

Sometimes ACID properties are too rigid. For instance, the I (Isolation) prop-
erty may prevent parallel transactions from proceeding at all, if any of them
is READ WRITE. This condition can be weakened by using isolation levels.
These levels are defined as follows:
• SERIALIZABLE: the transaction only sees data that was committed be-

fore the transaction began.
• REPEATABLE READ: like READ COMMITTED, but previously read

data may not be changed.
• READ COMMITTED: the transaction can see data that is committed

by other transactions during it is running, in addition to data committed
before it started.

• READ UNCOMMITTED: the transaction sees everything from other trans-
actions, even uncommitted.

The standard example about parallel transactions is flight booking. Suppose
you have the schema

Seats(date,flight,seat,status)

where the status is either ”vacant” or occupied by a passanger. Now, an
internet booking program may inspect this table to suggest flights to customers.
After the customer has chosen a seat, the system will update the table:

SELECT seat FROM Seats WHERE status=’vacant’ AND date=...

UPDATE Seats SET status=’occupied’ WHERE seat=...
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It makes sense to make this as one transaction.
However, if many customers want the same flight on the same day, how

should the system behave? The safest policy is only to allow one booking trans-
action at a time and let all others wait. This would guarantee the ACID prop-
erties. The opposite is to let SELECTs and UPDATEs be freely intertwined.
This could lead to interference problems of the following kinds:
• Dirty reads: read data resulting from a concurrent uncommitted trans-

action.
T1 __________________READ a ____________

T2 ________INSERT a _________ROLLBACK___

• Non-repeatable reads: read data twice and get different resulats (be-
cause of concurrent committed transaction that modifies or deletes the
data).
T1 _____READ a _______________________READ a

T2 _____________UPDATE a=a’___COMMIT _______

• Phantoms: execute a query twice and get different results (because of
concurrent committed transaction).
T1 SELECT * FROM A _________________________SELECT * FROM A

T2 ________________INSERT INTO A a___COMMIT _______________

The following table shows which interference are allowed by which isolation
levels, from the strictest to the loosest:

dirty reads non-repeatable reads phantoms
SERIALIZABLE - - -
REPEATABLE READ - - +
READ COMMITTED - + +
READ UNCOMMITTED + + +

Note. PostgreSQL has only three distinct levels: SERIALIZABLE, REPEAT-
ABLE READ, and READ COMMITTED. READ UNCOMMITTED means
READ COMMITTED. Hence no dirty reads are allowed.

9.4 Indexes

An index is an efficient lookup table, making it fast to fetch information. A
DBMS automatically creates an index for the primary key of each table. One
can manually create and drop keys for other attributes by using the following
SQL syntax:

statement ::=

CREATE INDEX indexname ON tablename (attribute+)?

| DROP INDEX indexname

Creating an index is a mixed blessing, since it
• speeds up queries
• makes modifications slower
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An index obviously also takes extra space. To decide whether to create an index
on some attributes, one should estimate the cost of typical operations. The cost
is traditionally calculated by the following cost model:
• The disk is divided to blocks.
• Each tuple is in a block, which may contain many tuples.
• A block access is the smallest unit of time.
• Read 1 tuple = 1 block access.
• Modify 1 tuple = 2 block accesses (read + write).
• Every table is stored in some number n blocks. Hence,

– Reading all tuples of a table = n block accesses.
– In particular, lookup all tuples matching an attibute without index

= n.
– Similarly, modification without index = 2n
– Insert new value without index = 2 (read one block and write it back)

• An index is stored in 1 block (idealizing assumption). Hence, for indexed
attributes,

– Reading the whole index = 1 block access.
– Lookup 1 tuple (i.e. to find where it is stored) = 1 block access
– Fetch all tuples = 1 + k block accesses (where k << n is the number

of tuples per attribute)
– In particular, fetching a tuple if the index is a key = 2 (1 + k with

k=1)
– Modify (or insert) 1 tuple with index = 4 block accesses (read and

write both the tuple and the index)
With this model, the decision goes as follows:

1. Generate some candidates for indexes: I1, . . . , Ik
2. Identify the a set of typical SQL statements (for instance, the queries and

updates performed via the end user interface): S1, . . . , Sn

3. For each candidate index configuration, compute the costs of the typical
statements: C(Ii, Sj)

4. Estimate the probabilities of each typical statement, e.g. as its relative
frequency: P (Sj)

5. Select the best index configuration, i.e. the one with the lowest expected

cost: argmini

n∑
j=1

P (Sj)C(Ii)

Example. Consider a phone book, with the schema

PhoneNumbers(name,number)

Neither the name nor the number can be assumed to be a key, since one person
can have many numbers, and many persons can share a number. Assume that

• the table is stored in 100 blocks: n=100

• each name has on the average 2 numbers (k=2), whereas each number has
1 person (k=1 ; actually, 1.01, but we round this down to 1)
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• the following statement types occur with the following frequencies:

SELECT number FROM PhoneNumbers WHERE name=X -- 0.8

SELECT name FROM PhoneNumbers WHERE number=Y -- 0.05

INSERT INTO PhoneNumbers VALUES (X,Y) -- 0.15

Here are the costs with each indexing configuration, with ”index both” as
the winner:

no index index name index number index both
SELECT number 100 3 100 3
SELECT name 100 100 2 2
INSERT 2 4 4 6
total cost 85.3 8.0 80.25 3.0
why 80+5+0.3 2.4+5+0.6 80+0.05+0.2 2.4+0.1+0.9
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10 Alternative data models

The relational data model has been dominating the database world for a long
time. But there are alternative models, some of which are gaining popularity.
XML is an old model, often seen as a language for documents rather than
data. In this perspective, it is a generalization of HTML. But it is a very
powerful generalization, which can be used for any structured data. XML data
objects need not be just tuples, but they can be arbitrary trees. XML also
has designated query languages, such as XPath and XQuery. This chapter
introduces XML and gives a summary of XPath. On the other end of the scale,
there are models simpler than SQL, known as ”NoSQL” models. These models
are popular in so-called big data applications, since they support the distribution
of data on many computers. NoSQL is implemented in systems like Cassandra,
originally developed by Facebook and now also used for instance by Spotify.

10.1 XML and its data model

XML (eXtensible Markup Language) is a notation for documents and data.
For documents, it can be seen as a generalization of HTML (Hypertext Markup
Language): HTML is just one of the languages that can be defined in XML.
If more structure is wanted for special kinds of documents, HTML can be ”ex-
tended” with the help of XML. For instance, if we want to store an English-
Swedish dictionary, we can build the following kind of XML objects:

<word>

<pos>Noun</pos>

<english>computer</english>

<swedish>dator</swedish>

</word>

(where pos = part of speech = ”ordklass”). When printing the dictionary, this
object could be transformed into an HTML object,

<p>

<i>computer</i> (Noun)

dator

</p>

But the HTML format is of course less suitable for using the dictionary as data,
where one can look up words. Therefore the original XML structure is better
suited for storing the dictionary data.

The form of an XML data object is

<tag> ... </tag>

where <tag> is the start tag and </tag> is the end tag. A limiting case is
tags without no content in between, which has a shorthand notation,
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<tag/> = <tag></tag>

All XML data must be properly nested between start and end tags. The
syntax is the same for all kinds of XML, including XHTML (which is XML-
compliant HTML): Plain HTML, in contrast to XHTML, also allows start tags
without end tags.

From the data perspective, the XML object corresponds to a row in a rela-
tional database with the schema

Words(pos,english,swedish)

A schema for XML data can be defined in a DTD (Document Type Dec-
laration). The DTD expression for the ”word” schema assumed by the above
object is

<!ELEMENT word (pos, english, swedish)>

<!ELEMENT pos (#PCDATA)>

<!ELEMENT english (#PCDATA)>

<!ELEMENT swedish (#PCDATA)>

The entries in a DTD define elements, which are structures of data. The first
line defines an element called word as a tuple of elements pos, english, and
swedish. These other elements are all defined as #PCDATA, which means parsed
character data. It can be used for translating TEXT in SQL. But it is moreover
parsed, which means that all XML tags in the data (such as HTML formatting)
are interpreted as tags. (There is also a type for unparsed text, CDATA, but it
cannot be used in ELEMENT declarations.)

XML supports more data structures than the relational model. In the re-
lational model, the only structure is the tuple, and all its elements must be
atomic. In full XML, the elements of tuples can be structured elements them-
selves. They are called daughter elements. In fact, XML supports algebraic
datatypes similar to Haskell’s data definitions:

• Elements can be defined as

tuples of elements: E, F

lists of elements: E*

nonempty lists of elements: E+

alternative elements: E | F
optional elements: E?

strings: #PCDATA

• Elements can be recursive, that is, a part of an element can be an instance
of the element itself. This enables elements of unlimited size.

• Thus the elements of XML are trees, not just tuples. (A tuple is a limiting
case, with just one branching node and leaves under it.)
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The validation of an XML document checks its correctness with respect to a
DTD. It corresponds to type checking in Haskell. Validation tools are available
on the web, for instance, http://validator.w3.org/

Figure 8 gives an example of a recursive type. It encodes a data type for
arithmetic expression, and an element representing the expression 23 + 15 * x.
It shows a complete XML document, which consists of a header, a DTD (starting
with the keyword DOCTYPE), and an element. It also shows a corresponding
algebraic datatype definition in Haskell and a Haskell expression corresponding
to the XML element.

To encode SQL tuples, we only need the tuple type and the PCDATA type.
However, this DTD encoding does not capture all parts of SQL’s table defini-
tions:
• basic types in XML are not so refined: basically only TEXT is available
• constraints cannot be expressed in the DTD

Some of these problems can be solved by using attributes rather than elements.
Here is an alternative representation of dictionary entries:

<!ELEMENT word EMPTY>

<!ATTLIST word

pos CDATA #REQUIRED

english CDATA #REQUIRED

swedish CDATA #REQUIRED

>

<word pos="Noun" english="Computer" swedish="Dator">

The #REQUIRED keyword is similar to a NOT NULL constraint in SQL. Optional
attributes have the keyword #IMPLIED.

Let us look at another example, which shows how to model referential con-
straints:

<!ELEMENT Country EMPTY>

<!ATTLIST Country

name CDATA #REQUIRED

currency IDREF #REQUIRED

>

<!ELEMENT Currency EMPTY>

<!ATTLIST Currency

code ID #REQUIRED

name CDATA #REQUIRED

>

The code attribute of Currency is declared as ID, which means that it is an iden-
tifier (which moreover has to be unique). The currency attribute of Country is
declared as IDREF, which means it must be an identifier declared as ID in some
other element. However, since IDREF does not specify what element, it only
comes half way in expressing a referential constraint. Some of these problems
are solved in alternative format to DTD, called XML Schema.
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-- XML

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<!DOCTYPE expression [

<!ELEMENT expression (variable | constant | addition | multiplication)>

<!ELEMENT variable (#PCDATA)>

<!ELEMENT constant (#PCDATA)>

<!ELEMENT addition (expression,expression)>

<!ELEMENT multiplication (expression,expression)>

]>

<expression>

<addition>

<expression>

<constant>23</constant>

</expression>

<expression>

<multiplication>

<expression>

<constant>15</constant>

</expression>

<expression>

<variable>x</variable>

</expression>

</multiplication>

</expression>

</addition>

</expression>

-- Haskell

data Expression =

Variable String

| Constant String

| Addition Expression Expression

| Multiplication Expression Expression

Addition

(Constant "23")

(Multiplication

(Constant "15")

(Variable "x")))

Figure 8: A complete XML document for arithmetic expressions and the corre-
sponding Haskell code.
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Attributes were originally meant for metadata (such as font size) rather than
data. In fact, the recommendation from W3C is to use elements rather than at-
tributes for data (see http://www.w3schools.com/xml/xml dtd el vs attr.asp).
However, since attributes enable some constraints that elements don’t, their use
for data can be justified.

10.2 The XPath query language

The XPath language gives a concise notation to extract XML elements. Its
syntax is quite similar to Unix directory paths. Here is a grammar for a part of
XPath:

xpath ::=

axis item condition? xpath # continue with any xpath

| xpath | xpath # union of xpaths, with literal "|"

| # end of xpath

axis ::=

| / # this level

| // # any level below

item ::=

| element

| @attribute

| * # any element

| @* # any attribute

| .. # level above

condition ::=

[ expression =|!= expression ]

expression ::=

@attribute | integer | string

Here are some examples: - /Countries/country all <country> elements right
under <Countries> - /Countries//@name all values of name attribute any-
where under <Countries> - /Countries/currency/[@name = "dollar"] all
<currency> elements where name is dollar

There is a more expressive query language called XQuery, which extends
XPath. Another possibility is to use XSLT (eXtensible Stylesheet Language
for Transformations), whose standard use is to convert between XML formats
(e.g. from dictionary data to HTML). Writing queries in a host language (in a
similar way as in JDBC) is of course also a possibility.

There is an on-line XPath test program in http://xmlgrid.net/xpath.html
but I didn’t manage to make it work yet.
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10.3 XML and XPath in the query converter

The Query Converter has a functionality for converting an SQL database into
an XML object, with its schema as DTD. It also implements a part of the XPath
query language. The command

x

without an argument prints the current database as an XML document (with
DTD and the elements). The command xp takes an XPath query as an argument
and shows the result of executing it:

xp /QConvData//@name

extracts all values of the name attribute everywhere in the descendants of /QConvData.
(At the time of writing, the XPath interpreter is not fully functional.)

The XML encoding of SQL tuples uses attributes rather than child elements.
It does not (yet) express the IDREF constraints. All tables are wrapped in an
element called QConvData.

The command

ix <FILE>

reads an XML file, parses it, and validates it if it has a DTD. The xp command
with an XPath query applies to all XML files that have been read either in this
way or by conversion from SQL. Hence one can also query XML databases that
are not representable as SQL.

10.4 NoSQL data models*

Big Data is a word used for data whose mere size is a problem. What the size
is depends on many things, such as available storage and computing power. At
the time of writing, Big Data is often expected to be at least terabytes (1012

bytes), maybe even petabytes (1015).
In relational databases, each table must usually reside in one computer. In

Big Data, data is usually distributed, maybe to thousands of computers (or
millions in the case of companies like Google). The computations must also be
parallelizable as much as possible. This has implications for big data systems,
which makes them different from relational databases:
• simpler queries (e.g. no joins, search on indexed attributes only)
• looser structures (e.g. no tables with rigid schemas)
• less integrity guarantees (e.g. no checking of constraints, no transactions)
• more redundancy (”denormalization” to keep together data that belongs

together)
NoSQL is not just one data model but several:
• key-value model
• column-oriented model
• graph model

We will take a closer look at Cassandra, which is a hybrid of the first two
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10.5 The Cassandra DBMS and its query language CQL*

”Cassandra is essentially a hybrid between a key-value and a column-oriented
(or tabular) database. Its data model is a partitioned row store with tunable
consistency... Rows are organized into tables; the first component of a table’s
primary key is the partition key; within a partition, rows are clustered by the
remaining columns of the key... Other columns may be indexed separately from
the primary key.”
https://en.wikipedia.org/wiki/Apache Cassandra

Here is a comparison between Cassandra and relational databases:

Cassandra SQL
data object key-value pair=(rowkey, columns) row
single value column=(attribute,value,timestamp) column value
collection column family table
database keyspace schema, E-R diagram
storage unit key-value pair table
query language CQL SQL
query engine MapReduce relational algebra

The MapReduce query engine is similar to map and fold in functinal pro-
gramming. The computations can be made in parallel in different computers.
It was originally developed at Google, on top of the Bigtable data storage
system. Bigtagle is a proprietary system, which was the model of the open-
source Cassandra, together with Amazon’s Dynamo data storage system.2 The
MapReduce implementation used by Cassandra is Hadoop.

It is easy to try out Cassandra, if you are familiar with SQL. Let us follow
the instructions from the tutorial in

https://wiki.apache.org/cassandra/GettingStarted

Step 1. Download Cassandra from http://cassandra.apache.org/download/
Step 2. Install Cassandra by unpacking the downloaded archive.
Step 3. Start Cassandra server by going to the created directory and giving
the command

bin/cassandra -f

Step 4. Start CQL shell by giving the command

bin/cqlsh

The following CQL session shows some of the main commands. First time you
have to create a keyspace:

cqlsh> CREATE KEYSPACE mykeyspace

WITH REPLICATION = { ’class’ : ’SimpleStrategy’, ’replication_factor’ : 1 };

2 The distribution and replication of data in Cassandra is more like in Dynamo.
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Take it to use for your subsequent commands:

cqlsh> USE mykeyspace ;

Create a column family - in later versions kindly called a ”table”!

> CREATE TABLE Countries (

name TEXT PRIMARY KEY,

capital TEXT,

population INT,

area INT,

currency TEXT

) ;

Insert values for different subsets of the columns:

> INSERT INTO Countries

(name,capital,population,area,currency)

VALUES (’Sweden’,’Stockholm’,9000000,444000) ;

> INSERT INTO Countries

(name,capital)

VALUES (’Norway’,’Oslo’) ;

Make your first queries:

> SELECT * FROM countries ;

name | area | capital | currency | population

--------+--------+-----------+----------+------------

Sweden | 444000 | Stockholm | SEK | 9000000

Norway | null | Oslo | null | null

> SELECT capital, currency FROM Countries WHERE name = ’Sweden’ ;

capital | currency

-----------+----------

Stockholm | SEK

Now you may have the illusion of being in SQL! However,

> SELECT name FROM Countries WHERE capital = ’Oslo’ ;

InvalidRequest: code=2200 [Invalid query] message=

"No secondary indexes on the restricted columns support the provided operators: "

So you can only retrieve indexed values. PRIMARY KEY creates the primary
index, but you can also create a secondary index:
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> CREATE INDEX on Countries(capital) ;

> SELECT name FROM Countries WHERE capital = ’Oslo’ ;

name

--------

Norway

Most SQL constraints have no counterparts, but PRIMARY KEY does:

> INSERT INTO countries

(capital,population,area,currency)

VALUES (’Helsinki’,5000000, 337000,’EUR’) ;

InvalidRequest: code=2200 [Invalid query] message=

"Missing mandatory PRIMARY KEY part name"

A complete grammar of CQL can be found in

https://cassandra.apache.org/doc/cql/CQL.html

It is much simpler than the SQL grammar. But at least my version of CQL
shell does not support the full set of queries.

10.6 Further reading on NoSQL*

The course book covers XML, in chapters 11 and 12. The NoSQL approach
is more recent, so we must refer to other material. I have found the following
useful and readable:

• Martin Fowler, Introduction to NoSQL
https://www.youtube.com/watch?v=qI g07C Q5I A very good overview
talk without hype.

• ”Cassandra Essentials Tutorial”. http://www.datastax.com/resources/tutorials
Recommended by Oscar Söderlund in his Spotify guest talk.

• Kelley Reynolds, ”Understanding the Cassandra Data Model from a SQL
Perspective”, 2010.
http://rubyscale.com/blog/2010/09/13/understanding-the-cassandra-data-
model-from-a-sql-perspective/

• Chang, Fay; Dean, Jeffrey; Ghemawat, Sanjay; Hsieh, Wilson C; Wallach,
Deborah A; Burrows, Michael ‘Mike’; Chandra, Tushar; Fikes, Andrew;
Gruber, Robert E, ”Bigtable: A Distributed Storage System for Struc-
tured Data”, 2006.
http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-
osdi06.pdf
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• Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-
lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,
Peter Vosshall and Werner Vogels, ”Dynamo: Amazon’s Highly Available
Key-value Store”, 2007.
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

• Jeffrey Dean and Sanjay Ghemawat, MapReduce: ”Simplified Data Pro-
cessing on Large Clusters”, 2004.
http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-
osdi04.pdf

• Ralf Lämmel, ”Google’s MapReduce Programming Model - Revisited”,
2008.
http://userpages.uni-koblenz.de/˜laemmel/MapReduce/paper.pdf
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