
Database Construction

(and Usage)

More on Modifications and Table Creation

Assertions

Triggers

1

Summary – Modifications

• Modifying the contents of a database:

– Insertions
INSERT INTO tablename VALUES tuple

– Deletions
DELETE FROM tablename WHERE test over rows

– Updates
UPDATE tablename

SET attribute = value

WHERE test over rows

2

Insertions with queries

• The values to be inserted could be taken
from the result of a query:

– Example:

INSERT INTO tablename (query)

INSERT INTO GivenCourses

(SELECT course, period + 2, teacher, NULL

FROM GivenCourses

WHERE period <= 2);

All courses that are given in periods one and two are also

scheduled to be given two periods later, with the same teacher.

3

Explicit attribute lists

• Attribute order could be given explicit
when inserting.

– Example:

INSERT INTO

GivenCourses(course, period, teacher, nrStudents)

(SELECT course, period + 2, teacher, NULL

FROM GivenCourses

WHERE period <= 2);

Perhaps the teacher and nrStudents attributes were listed in
the other order in the definition of the table? Doesn’t matter
anymore since they are explicitly listed.

4

Quiz

What will the following insertion result in?

– Attribute lists can be partial. Any attributes not

mentioned will be given the value a default
value, which by default is NULL.

INSERT INTO

GivenCourses(course, period, teacher)

VALUES (’TDA357’, 3, ’Niklas Broberg’);

5

Default values

• Attributes can be given default values.

– Specified when a table is defined using the DEFAULT

keyword.

– Example:

– Default default value is NULL.

CREATE TABLE GivenCourses (

course CHAR(6),

period INT,

teacher VARCHAR(50),

nrStudents INT DEFAULT 0,

… constraints …

);

6

Insertion with default values

• Leaving out an attribute in an insertion with
explicitly named attributes gives that row the

default value for that attribute:

• When no attribute list is given, the same effect

can be achieved using the DEFAULT keyword:

INSERT INTO

GivenCourses(course, period, teacher)

VALUES (’TDA357’, 3, ’Niklas Broberg’);

INSERT INTO GivenCourses

VALUES (’TDA357’, 3, ’Niklas Broberg’, DEFAULT);

7

Quiz!

course per teacher nrSt

TDA357 2 Niklas Broberg 130

TDA357 4 Rogardt Heldal 95

TIN090 1 Devdatt Dubhashi 62

code name

TDA357 Databases

TIN090 Algorithms

Courses

GivenCourses

DELETE FROM Courses

WHERE code = ’TDA357’;

Error, because of the reference from GivenCourses to

Courses. Is this reasonable?

8

Policies for updates and deletions

• Rejecting a deletion or update in the
presence of a reference isn’t always the

best option.

• SQL provides two other methods to
resolve the problem: Cascading or Set

NULL.

– Default is to reject the deletion/update.

9

Cascading

• Cascading: When the referenced row is
deleted/updated, also delete/update any

rows that refer to it.

– Typically used for ”parts of a whole”.

– Set using ON [DELETE|UPDATE] CASCADE

CREATE TABLE GivenCourses (

course CHAR(6),

CONSTRAINT CourseExists

FOREIGN KEY course REFERENCES Courses(code)

ON DELETE CASCADE

ON UPDATE CASCADE

… more columns and constraints …

); 10

Set NULL

• Set NULL: When the referenced row is
deleted/updated, set the corresponding attribute

in any referencing rows to NULL.

– Typically used when there is a connection, but one

that does not affect the actual existence of the

referencing row.

– Set using ON [DELETE|UPDATE] SET NULL
CREATE TABLE GivenCourses (

teacher VARCHAR(50),

CONSTRAINT TeacherExists

FOREIGN KEY teacher REFERENCES Teachers(name)

ON DELETE SET NULL

ON UPDATE CASCADE

… more columns and constraints …

); 11

Quiz!

Argue for sensible policies for deletions and
updates for the Lectures table.

– GivenCourses.(course, period):

• ON DELETE CASCADE

• ON UPDATE CASCADE or reject

– Rooms.name:

• ON DELETE SET NULL or reject

• ON UPDATE CASCADE

Lectures(course, period, weekday, hour, room)

(course, period) -> GivenCourses.(course, period)

room -> Rooms.name

12

Single-attribute constraints

• Many constraints affect only the values of a
single attribute. SQL allows us to specify such
constraints together with the attribute itself, as
inline constraints.

• More than one inline constraint on the same
attribute is fine, just put them after one another.

• Default values should be specified before
constraints.

CREATE TABLE Courses (

code CHAR(6) CONSTRAINT CourseCode PRIMARY KEY,

name VARCHAR(50)

);

13

Special case: NOT NULL

• Specifying that a value must be non-NULL
can be done with a simplified syntax:

instead of

CREATE TABLE Courses (

code CHAR(6) CONSTRAINT CourseCode PRIMARY KEY,

name VARCHAR(50) NOT NULL

);

CREATE TABLE Courses (

code CHAR(6) CONSTRAINT CourseCode PRIMARY KEY,

name VARCHAR(50) CHECK (name IS NOT NULL)

);

14

Special case: REFERENCES

• When a foreign key constraint is defined inline,
the FOREIGN KEY keywords can be left out.

• An attribute that references another attribute
could be seen as holding copies of that other

attribute. Why specify the type again?

– The type can be left out even if the foreign key

constraint is specified separately.

CREATE TABLE GivenCourses (

course REFERENCES Courses(code),

… more columns and constraints …

);

15

Quiz!

It might be tempting to write

Why will this not work?

An inline constraint only constrains the current

attribute. What the above tries to achieve is to
declare two separate primary keys, which is not

allowed in a table.

CREATE TABLE GivenCourses (

course REFERENCES Courses(code) PRIMARY KEY,

period INT CHECK (period IN (1,2,3,4)) PRIMARY KEY,

… more columns and constraints …

);

16

Constraints

• We have different kinds of constraints:

– Dependency constraints (X → A)

• Table structure, PRIMARY KEY, UNIQUE

– Referential constraints

• FOREIGN KEY … REFERENCES

– Value constraints

• CHECK

– Miscellaneous constraints (like multiplicity)

• E.g. no teacher may hold more than 2 courses at the same

time.

• How do we handle these?

17

Quiz!

”No teacher may hold more than two
courses at the same time!”

How can we formulate this constraint in

SQL?
NOT EXISTS (

SELECT teacher, period

FROM GivenCourses

GROUP BY teacher, period

HAVING COUNT(course) > 2

);

18

Assertions

• Assertions are a way to specify global
constraints on a database.

– Create using CREATE ASSERTION:

– Example:
CREATE ASSERTION NotOverworked

CHECK (NOT EXISTS

(SELECT teacher, period

FROM GivenCourses

GROUP BY teacher, period

HAVING COUNT(course) > 2)

);

CREATE ASSERTION name CHECK test

19

Assertions vs Checks

• Assertions are global – they are guaranteed to
hold throughout any modifications.

• Checks on attributes in a table are only checked
when that table is updated. If the check involves
another table in a subquery, modifications on
that table will not be checked.

• Inline checks on attributes are only checked
when that attribute is modified. If the check
involves references to other attributes in the
same table through a subquery, modifications on
those attributes will not be checked.

20

Assertion Properties

• Assertions are static constraints on a database
that, like all constraints, are guaranteed always

to be true.

• Any modification that would violate an assertion

is rejected.

• Assertions potentially need to be checked on
every modification. This is very costly!

• And what does Oracle do with inefficient things?

– Disallows them!

21

Triggers

22

Triggers

• When something wants to change the
database in some way, trigger another

action as well or instead.

– Example (silly): Whenever a new course is

inserted in Courses, schedule that course to
be given in period 1, with NULL for the

teacher and nrStudents fields.

– Example: Whenever a lecture is scheduled to
take place at 8:00, schedule the lecture to

10:00 instead.
23

Assertions as triggers

• ”Instead” could mean to do nothing, i.e.
reject the update, which means we can use

triggers to simulate assertions.

– Still costly, but puts the burden on the user to

specify when the conditions should be checked
(hand optimization).

– Example: Whenever a teacher is scheduled to

hold a course in a period where he or she
already holds two courses, reject the insertion.

24

Basic trigger structure

CREATE TRIGGER name

[BEFORE|AFTER] [INSERT|DELETE|UPDATE] ON tablename

REFERENCING [NEW|OLD] [ROW|TABLE] AS variable

FOR EACH [ROW|STATEMENT]

WHEN condition

action to perform Decide whether to run

the trigger or not.

What should happen when

the trigger is triggered.

A trigger is sometimes referred to as an

Event-Condition-Action rule (or ECA rule)

25

Example trigger:

– Note: Oracle syntax is slightly different:

• Leave out the word ROW after NEW (clear from the context)

• Prefix variables with : (as in :newcourse)

• Requires BEGIN and END surrounding the action block.

CREATE TRIGGER DefaultScheduling

AFTER INSERT ON Courses

REFERENCING NEW ROW AS newcourse

FOR EACH ROW

INSERT INTO GivenCourses(course, period)

VALUES (newcourse.code, 1);

26

Quiz!

Write a trigger that, whenever a lecture is initially
scheduled to take place at 8:00, puts it at 10:00

instead.

– We can update in the rows using the SET command.
• Oracle once again wants to be special and uses := instead:

:newlecture.hour := 10;

CREATE TRIGGER NoEarlyLectures

BEFORE INSERT ON Lectures

REFERENCING NEW ROW AS newlecture

FOR EACH ROW

WHEN (newlecture.hour = 8)

SET newlecture.hour = 10;

27

Trigger events

• The event clause of a trigger
definition defines when to try

the trigger:

– AFTER or BEFORE

– INSERT, DELETE or UPDATE

• An update could be an UPDATE
OF (attributes) to make it consider
only certain attributes.

– ON which table to apply the

trigger.

– Example: AFTER INSERT ON Courses

CREATE TRIGGER name

event clause

referencing clause

”for each” clause

condition clause

action clause

28

FOR EACH ROW

• A single insert, update or
deletion statement could
affect more than one row.

• If FOR EACH ROW is
specified, the trigger is run
once for each row
affected, otherwise once
for each statement.

• Default is FOR EACH
STATEMENT, which could
also be stated explicitly.

CREATE TRIGGER name

event clause

referencing clause

”for each” clause

condition clause

action clause

29

Referencing

• Specify variables that
refer to the rows being

affected by the event.

• If insertion or update, then

we can refer to NEW, if
deletion or update we can
refer to OLD.

• If the trigger is meant for
each row, we must refer

to rows, otherwise tables.

CREATE TRIGGER name

event clause

referencing clause

”for each” clause

condition clause

action clause

REFERENCING

NEW ROW as newcourse,

OLD ROW as oldcourse

Example:

30

Trigger Condition

• The condition specifies
whether the action should
be run or not.

• Any boolean-valued
expression may be used.

• Evaluated before or after
the event, depending on
BEFORE or AFTER.

• Can refer to the new and
old rows using the
variables defined in the
referencing clause.

CREATE TRIGGER name

event clause

referencing clause

”for each” clause

condition clause

action clause

WHEN

(newcourse.code

LIKE ’TDA%’)

Example:

31

Action block

• Specifies what statements

to run when the trigger is

executed.

• Multiple statements must be

enclosed using BEGIN and

END.

• Can refer to row (or table)

variables, and change in

them (only rows) using the

SET statement.

CREATE TRIGGER name

event clause

referencing clause

”for each” clause

condition clause

action clause

INSERT INTO

GivenCourses(course, period)

VALUES (newcourse.code, 1);

Example:

32

Example revisited

CREATE TRIGGER DefaultScheduling

AFTER INSERT ON Courses

REFERENCING NEW ROW AS newcourse

FOR EACH ROW

INSERT INTO GivenCourses(course, period)

VALUES (newcourse.code, 1);

Because there is a foreign key constraint from

GivenCourses to Courses, and until we have

inserted the row into Courses, there would be

nothing for the new row in GivenCourses to refer to.

Why must this be run AFTER INSERT? Why not BEFORE?

33

Triggers vs. Oracle

• Triggers are costly if the condition involves joining tables
together to find some data. What does Oracle do with
inefficient stuff?

– Disallows it!

• Oracle only allows conditions over the table on which the
trigger is defined.

• A trigger on a table may not change that same table in
the action block.

• Lots of special syntax.

• Oracle has its own built-in programming language
PL/SQL in which action blocks can be specified.

• Rejecting a statement can be done in Oracle using the
RAISE_USER_ERROR function, check the Oracle
reference for details.

34

Recap on views

• Views are persistent named queries – they
can be referred to just as if they were

tables, but their data is contained in other
(base) tables.

• Also referred to as virtual tables.

CREATE VIEW DBLectures AS

SELECT room, hour, weekday

FROM Lectures

WHERE course = ’TDA357’

AND period = 3;
35

Updating views

• Views contain no data of their own, and so
cannot normally be updated.

• But views can be queried without

containing any data of their own. The trick
is to translate the query on the view into

what it really means, i.e. the view
definition.

• Why not do the same for modifications?

36

Updatable views

• If the view is built by selecting from a
single relation R such that
– no references to R in subqueries in the WHERE

clause

– the attribute list of the view contains enough attributes

of R so that the inserted tuple will show up in the view

again even if we pad the rest with NULL.

then the view is updatable, and any

updates on it can be pushed back into R.

37

Example:

Not an updatable view:

CREATE VIEW DBLectures AS

SELECT room, hour, weekday

FROM Lectures

WHERE course = ’TDA357’

AND period = 2; Updatable view:

CREATE VIEW DBLectures2 AS

SELECT *

FROM Lectures

WHERE course = ’TDA357’

AND period = 2;

To insert on DBLectures, any rows

inserted would get NULL for the

fields course and period, which

means they would not show up in

DBLectures. We don’t have this

problem with DBLectures2.

38

Quiz!

What would it mean to insert data ”into” the
view DBLectures?

Probably what we mean is to insert a new lecture
at the specified time and place for the course
’TDA357’ in period 2. Why not say so then?

CREATE VIEW DBLectures AS

SELECT room, hour, weekday

FROM Lectures

WHERE course = ’TDA357’

AND period = 2;

39

Triggers on views

• We can define what modifications on
views mean using triggers.

• Special form of event for views only:

INSTEAD OF.

CREATE TRIGGER DBLectureInsert

INSTEAD OF INSERT ON DBLectures

REFERENCING NEW ROW AS newl

FOR EACH ROW

INSERT INTO Lectures

VALUES (’TDA357’, 2, newl.weekday,

newl.hour, newl.room);

40

Quiz: Fooling Oracle!

• When writing the condition for a trigger,
Oracle will not allow us to look in tables

other than the one that the trigger is
defined on.

• How can we get around this?
– We create a view with all the information we need,

and then write our trigger on the view. We can then

look at all the needed information, and translate the

modifications to be done on the base table.

41

How to really do it, the Oracle way

• Use PL/SQL statements

– IF-THEN-ELSE-END IF

– Condition in the IF may look at any tables,

unlike the WHEN

– Note that there is a difference:

• If the WHEN clause fails, the trigger will not be run.

• The IF test is part of the action block, so if we

reach it the trigger is already running, and will run

to the end unless aborted.

42

Summary – Triggers

• Triggers specify extra actions to take on
certain events.

– Event: BEFORE or AFTER a modification

– Condition: test if we should run the trigger

– Action: The stuff to be done.

• SET to change values in the rows being modified.

• Triggers can be defined on views

– Event: INSTEAD OF

43

Lab Part IV – Construction

• Write two triggers that together:

– Ensure the consistency of the waiting list.

– Ensure that prerequisites are respected.

44

• Hand in:

– Your SQL code for creating the triggers.

– Your SQL code for testing insertion and deletion

through these triggers.

– Your Oracle username and password (again).

• Submission deadline: Fri, Feb 21 (23:59)

Lab Part IV – Construction

45

Course Objectives – Construction

When the course is through, you should

– Given a database schema with related

constraints, implement the database in a
relational (SQL) DBMS

Courses(code, name, dept, examiner)

Rooms(roomNr, name, building)

Lectures(roomNr, day, hour, course)

roomNr -> Rooms.roomNr

course -> Courses.code

46

Exam – SQL DDL

”A grocery store wants a database to store information

about products and suppliers. After studying their

domain you have come up with the following database

schema. …”

• Write SQL statements that create the relations with

constraints as tables in a DBMS.

• Write a trigger that, whenever the quantity in store of

an item drops below a given threshhold, inserts an

order for that product with the supplier.

47

Next Lecture

Database Applications:
SQL/PSM

Embedded SQL

JDBC

48

