
Database design IV

INDs and 4NF

Design wrapup

1

The design process

Domain

E-R

Relations(key,attr)

attr -> Refs.key

FDs

More constraints,

fixes, redesigns…

2

Work flow

• DRAW your diagram of the domain.

• TRANSLATE to relations forming a
schema

• IDENTIFY dependencides from domain!

• RELATE the dependencies to the

schema, to find more constraints, and to
validate your design.

3

How NOT to find FDs

• Do an E-R diagram, translate, look at the
keys of relations, pick the proper FDs.

• Extra constraints: You can’t find those
”extras” in the core structure!

• Validation: If the FDs are taken from the
diagram, it will contain the same errors!

Quiz: Why not?

4

Work flow cont.

• Draw your diagram and translate to
relations: You now have the basic

structure for your database.

• Find extra constraints from the domain, via
FDs, to complete the design.

• In simple cases there might be no extras

to find, but in general there will be:

Both steps are needed!
5

Lab Assignment

• Write a ”student portal” application in Java
– Part I: Design

• Given a domain description, design a database schema using an E-R
diagram.

– Part II: Design

• Given a domain description, find and act on the functional dependencies of

the domain to fix the schema from Part I.

– Part III: Construction and Usage

• Implement the schema from Part II in Oracle.

• Insert relevant data.

• Create views to support key operations.

– Part IV: Construction

• Create triggers to support key operations.

– Part V: Interfacing from external Application

• Write a Java application that uses the database from Part III.

6

Part II – Dependencies

• Identify the functional dependencies that
you expect should hold for the domain.

• Identify any extra constraints required.

• Improve the schema from task 1 so that all

constraints are captured (or argue why
you cannot capture them).

7

Part II – Dependencies

• Hand in:

– a list of functional dependencies

– a list of extra constraints, with motivation

– an updated schema from task 1.

• Submission deadline: Fri, Feb 7 (23:59)

8

Quiz time!

What’s wrong with this schema?

Courses(code, period, name, teacher)

{(’TDA357’, 3, ’Databases’, ’Niklas Broberg’),

(’TDA357’, 2, ’Databases’, ’Graham Kemp’)}

Redundancy!

code→ name

code, period→ teacher

9

Using FDs to detect anomalies

• Whenever X → A holds for a relation R,
but X is not a key for R, then values of A

will be redundantly repeated!

Courses(code, period, name, teacher)

{(’TDA357’, 3, ’Databases’, ’Niklas Broberg’),

(’TDA357’, 2, ’Databases’, ’Graham Kemp’)}

code→ name

code, period→ teacher

10

Decomposition

• Fix the problem by decomposing Courses:

– Create one relation with the attributes from the offending FD, in
this case code and name.

– Keep the original relation, but remove all attributes from the RHS
of the FD. Insert a reference from the LHS in this relation, to the
key in the first.

Courses(code, name)

GivenCourses(code, period, teacher)

code -> Courses.code

Courses(code, period, name, teacher)

code→ name
code, period→ teacher

11

Boyce-Codd Normal Form

• A relation R is in Boyce-Codd Normal
Form (BCNF) if, whenever a nontrivial FD

X → A holds on R, X is a superkey of R.

– Remember: nontrivial means A is not part of X

– Remember: a superkey is any superset of a

key (including the keys themselves).

Courses(code, name)

GivenCourses(code, period, teacher)

12

3NF vs BCNF

• Three important properties of
decomposition:

1. Recovery (loss-less join)

2. No redundancy

3. Dependency preservation

• 3NF guarantees 1 and 3, but not 2.

• BCNF guarantees 1 and (almost) 2, but
not 3.

13

Almost?

Example:

Courses(code, name, room, teacher)

code→ name code room teacher

TDA357 VR Niklas Broberg

TDA357 VR Graham Kemp

TDA357 HC1 Niklas Broberg

TDA357 HC1 Graham Kemp

code name

TDA357 Databases

These two relations are in BCNF, but there’s lots of

redundancy!

14

code room teacher

TDA357 VR Niklas Broberg

TDA357 VR Graham Kemp

TDA357 HC1 Niklas Broberg

TDA357 HC1 Graham Kemp

Quiz time!

What’s wrong with this schema?

CourseInfo(code, room, teacher)

Redundancy!

(No FDs!)

15

Let’s start from the bottom…

• No redundancy before join

• The two starting tables are what we really want to have

code room

TDA357 HC1

TDA357 VR

code teacher

TDA357 Niklas Broberg

TDA357 Graham Kemp

code room teacher

TDA357 VR Niklas Broberg

TDA357 VR Graham Kemp

TDA357 HC1 Niklas Broberg

TDA357 HC1 Graham Kemp

16

Compare with E/R

Course

code

Room

name

LecturesIn

Teacher

name

Course

code

Room

name

LecturesIn

Teacher

name

Gives

LecturesIn(code, teacher, room)

code -> Courses.code

room -> Rooms.name

teacher -> Teachers.name

LecturesIn(code, room)

code -> Courses.code

room -> Rooms.name

Gives(code, teacher)

code -> Courses.code

teacher -> Teachers.name

17

Independencies (INDs)

• Some attributes are not uniquely defined (as
with FDs), but are still independent of the values
of other attributes.
– In our example: code does not determine room, there

can be several rooms for a course. But the rooms a
course uses is independent of the teachers on the
course.

• X ↠ Y | Z states that from the point of view of X,
Y and Z are independent.

– Just X ↠ Y means that X’s relationship to Y is
independent of all other attributes.

18

Independent how?

• An IND X ↠Y is an assertion that if two
tuples of a relation agree on all the

attributes of X, then their components in
the set of attributes Y may be swapped,

and the result will be two tuples that are
also in the relation.

• If (for some X) all values of Y (for that X)

can be combined with all values of Z (for
that X), then (from X) Y and Z are

independent.
19

Picture of IND X Y | Z

X Y Z

equal

exchange

If two tuples have the same value for X, different

values for Y and different values for the Z attributes,

then there must also exist tuples where the values

of Y are exchanged, otherwise Y and Z are not

independent!
20

Implied tuples

If we have:

Courses(code, name, room, teacher)

code→ name

code name room teacher

TDA357 Databases VR Niklas Broberg

TDA357 Databases HC1 Graham Kemp

TDA357 Databases VR Graham Kemp

TDA357 Databases HC1 Niklas Broberg

we must also have:

otherwise room and teacher would not be independent!

code↠ room | teacher

21

Compare with joining

• Joining two independent relations yields a
relation with all combinations of values!

code room

TDA357 HC1

TDA357 VR

code teacher

TDA357 Niklas Broberg

TDA357 Graham Kemp

code room teacher

TDA357 VR Niklas Broberg

TDA357 VR Graham Kemp

TDA357 HC1 Niklas Broberg

TDA357 HC1 Graham Kemp

22

FDs are INDs

• Every FD is an IND (but of course not the other
way around). Compare the following cases:

– If X ↠ Y holds for a relation, then all possible values

of Y for that X must be combined with all possible

combinations of values for ”all other attributes” for that

X.

– If X → A, there is only one possible value of A for that

X, and it will appear in all tuples where X appears.

Thus it will be combined with all combinations of

values that exist for that X for the rest of the

attributes.

23

Example:

code name room teacher

TDA357 Databases VR Niklas Broberg

TDA357 Databases VR Graham Kemp

TDA357 Databases HC1 Niklas Broberg

TDA357 Databases HC1 Graham Kemp

There are four possible combinations of values for the attributes
room and teacher, and the only possible value for the name

attribute, ”Databases”, appears in combination with all of them.

There are two possible combinations of values for the attributes
name and room, and all possible values of the attribute

teacher appear with both of these combinations.

There are two possible combinations of values for the attributes
name and teacher, and all possible values of the attribute

room appear with both of these combinations.

code↠ room

code↠ teacher

code↠ name

24

IND rules ≠ FD rules

• Complementation

– If X ↠ Y, and Z is all other attributes, then

X ↠ Z.

• Splitting doesn’t hold!!

– code↠ room, #seats

•code↠ room does not hold, since room and

#seats are not independent!

• None of the other rules for FDs hold either.

25

Example:

code name room #seats teacher

TDA357 Databases VR 216 Niklas Broberg

TDA357 Databases VR 216 Graham Kemp

TDA357 Databases HC1 126 Niklas Broberg

TDA357 Databases HC1 126 Graham Kemp

We cannot freely swap values in the #seats and room columns,

so neither

or

holds.

code↠ room, #seats

code↠ room

code↠ #seats

26

Fourth Normal Form

• The redundancy that comes from IND’s is
not removable by putting the database

schema in BCNF.

• There is a stronger normal form, called
4NF, that (intuitively) treats IND’s as FD’s

when it comes to decomposition, but not
when determining keys of the relation.

27

Fourth Normal Form (4NF)

• 4NF is a strengthening of BCNF to handle
redundancy that comes from independence.

– An IND X ↠ Y is trivial for R if

• Y is a subset of X

• X and Y together = R

– Non-trivial X → A violates BCNF for a relation R if X

is not a superkey.

– Non-trivial X ↠ Y violates 4NF for a relation R if X is

not a superkey.

• Note that what is a superkey or not is still determined by
FDs only.

28

BCNF Versus 4NF

• Remember that every FD X → Y is also
a IND, X ↠Y.

• Thus, if R is in 4NF, it is certainly in

BCNF.

– Because any BCNF violation is a 4NF

violation.

• But R could be in BCNF and not 4NF,

because IND’s are “invisible” to BCNF.

29

INDs for validation

• Remember that FDs can:

– Allow you to validate your schema.

– Find ”extra” constraints that the basic

structure doesn’t capture.

• INDs ONLY validate your schema.

– No extra dependencies to be found.

– If your E-R diagram and translation are

correct, INDs don’t matter.
30

The whole truth(?)…

• Independencies are called Multi-valued
dependencies (??!) in literature (including the

course book).

• … technically they are dependencies of a sorts,

but that’s really only relevant for abstract
mathematics, not databases. The important
thing about them is the independence between

attributes.

• So, forget you ever heard the name MVDs.

Repeat after me, INDependencies…

31

First and second?

• Only interesting as a theoretical
foundation, never used in practice.

– First Normal Form (1NF): All attributes are
atomic (no attributes are sets of values).

– Second Normal Form (2NF): Some simple

forms of redundancy removed.

• There are even more restrictive forms than

4NF, but these are rarely (if ever) used.

32

Example:

E-R does not imply BCNF

Occupied

code

SeatIn

number

Of Lecture

time

Course

Roomname

In Student

ssnr

33

Students(ssnr)

Courses(code)

Rooms(name)

Lectures(course,time,room)

course -> Courses.code

room -> Rooms.name

Seats(room,number)

room -> Rooms.name

Occupied(course,time,room,number,student)

(course,time) -> Lectures.(course,time)

(room,number) -> Seats.(room,number)

student -> Students.ssnr

Quiz: What just went wrong?

Occupied

code

SeatIn

number

Of Lecture

time

Course

Roomname

In Student

ssnr

Redundancy!

34

Fix attempt #1

(room,number) -> Seats.(room,number) ??

We broke the reference! Now we could (in theory) book
seats that don’t exist in the room where the lecture is
given!

Students(ssnr)

Courses(code)

Rooms(name)

Lectures(course,time,room)

course -> Courses.code

room -> Rooms.name

Seats(room,number)

room -> Rooms.name

Occupied(course,time,number,student)

(course,time) -> Lectures.(course,time)

student -> Students.ssnr

35

Students(ssnr)

Courses(code)

Rooms(name)

Lectures(course,time,room)

course -> Courses.code

room -> Rooms.name

Seats(room,number)

room -> Rooms.name

Occupied(course,time,number,room,student)

(course,time) -> Lectures.(course,time)

(room,number) -> Seats.(room,number)

student -> Students.ssnr

Fix attempt #2

No longer
part of key!

No guarantee that the hall where the seat is booked is
the same hall that the movie is shown in!

Same? We
can’t say!
Same? We
can’t say!

… and redundancy (3NF solution)
36

Students(ssnr)

Courses(code)

Rooms(name)

Lectures(course,time,room)

course -> Courses.code

room -> Rooms.name

Seats(room,number)

room -> Rooms.name

Occupied(course,time,number,room,student)

(course,time,room) ->

Lectures.(course,time,room)

(room,number) -> Seats.(room,number)

student -> Students.ssnr

Fix attempt #3

Same? We
can’t say!

Same!

Still redundancy though (3NF solution). Possibly the
best we can do though.

37

Moral of the story

• E-R diagrams don’t always yield a schema
that captures even the ”core” constraints,

or guarantee any particular normal form.

• FDs must be taken into account!

38

The design process revisited

Domain

E-R

Relations(key,attr)

attr -> Refs.key

FDs

More constraints,

fixes, redesigns…

39

Course Objectives – Design

When the course is through, you should

– Given a domain, know how to design a
database that correctly models the domain
and its constraints.

”We want a database that we can use for
scheduling courses and lectures. This is
how it’s supposed to work: …”

40

Exam – FDs and NFs (12)

”A car rental company has the following, not very

successful, database. They want your help to improve

it. …”

• Identify all functional dependencies you expect to hold

in the domain.

• Indicate which of those dependencies violate BCNF

with respect to the relations in the database.

• Do a complete decomposition of the database so that

the resulting relations are in BCNF.

41

Next Lecture

Database Construction –

SQL Data Definition Language

42

