
1

Database design II

Functional Dependencies

Lecture 3

Course Objectives

Design

Construction

Application
Usage

”We want a database that
we can use for scheduling
courses and lectures. This
is how it’s supposed to
work: …”

Courses(code, name, dept, examiner)
Rooms(roomNr, name, building)
Lectures(roomNr, day, hour, course)

roomNr -> Rooms.roomNr
course -> Courses.code

Course

code

dept

name

responsible

Room

roomNr

name

building

InOf Lecture

day hour Functional dependencies
Decomposition using
normal forms to remove
anomalies

Fix errors

Add constraints

Problem description

ER diagram

Relational database
schema

TODAY

Functional dependencies (FDs)

• X → A
– ”X determines A”, ”X gives A”
– ”A depends on X”

• X and A are sets of attributes
• Examples:

– code → name
– code, period → teacher

Assertions on a schema

• X → A is an assertion about a schema R
– If two tuples in R agree on the values of the

attributes in X, then they must also agree on
the value of A.

• Example: code, period → teacher
– If two tuples in the GivenCourses relation

have the same course code and period, then
they must also have the same teacher.

Assertions on a domain
• X → A is really an assertion about a domain D

– Let D be the relation that is the join (along references)
of all relations in the database of the domain.

• E.g. The Scheduler domain
– If two tuples in D agree on the values of the attributes

in X, then they must also agree on the value of A.

• Example: code, period → teacher
– If two tuples in the D relation (i.e. the domain) have

the same course code and period, then they must
also have the same teacher.

2

What are FDs really?
• Functional dependencies represent a special kind of

constraints of a domain – dependency constraints.

• The database we design should properly capture all
constraints of the domain.

• We can use FDs to verify that our design indeed
captures the constraints we expect, and add more
constraints to the design when needed.

What’s so functional?
• X → A is a (deterministic) function from X

to A. Given values for the attributes in the
set X, we get the value of A.

• Example:
– code → name
– imagine a deterministic function f(code)

which returns the name associated with a
given code.

A note on syntax
• A functional dependency exists between attributes in

the same relation, e.g. in relation Courses we have FD:
code → name

• A reference exists between attributes in two different
relations, e.g. for relation GivenCourses we have
reference:

course -> Courses.code

• Two completely different things, but with similar syntax.
Clear from context which is intended.

Quiz!

What are reasonable FDs for the
scheduler domain?

• Course codes and names
• The period a course is given
• The number of students taking a course
• The name of the course responsible
• The names of all lecture rooms
• The number of seats in a lecture room
• Weekdays and hours of lectures

Quiz: (an) answer

What are reasonable FDs for the
scheduler domain?

code → name
code, period → #students
code, period → teacher
room → #seats
code, period, weekday → hour
code, period, weekday → room
room, period, weekday, hour → code

Multiple attributes on R/LHS

• X → A,B
– Short for X → A and X → B
– If we have both X → A and X → B, we can

combine them to X → A,B.
– code, period → teacher, #students

• Multiple attributes on LHS can be crucial!
– code, period → teacher

•code → teacher
•period → teacher

3

Quiz!

• What’s the difference between the LHS of
a FD, and a key?
– both uniqely determine the values of other

attributes.
– …but a key must determine all other attributes

in a relation!
– We use FDs when determining keys of

relations (will see how shortly).

Example
Schedules(code, name, period, numStudents, teacher,

room, numSeats, weekday, hour)

code name per. #st teacher room #seats day hour
TDA357 Databases 2 200 Steven Van Acker HB2 186 Tuesday 10:00

TDA357 Databases 2 200 Steven Van Acker HB2 186 Wednesday 8:00

TDA357 Databases 3 93 Graham Kemp HC4 216 Tuesday 10:00

TDA357 Databases 3 93 Graham Kemp VR 228 Friday 10:00

TIN090 Algorithms 1 64 Devdatt Dubhashi HC1 126 Wednesday 08:00

TIN090 Algorithms 1 64 Devdatt Dubhashi HC1 126 Thursday 13:15

code, period → teacher ? Yes! This is a FD

…but {code, period} is not a key…

Example (decomposed)
Courses(code, name)
GivenCourses(course, period, #students, teacher)

course -> Courses.code
Lectures(course, period, room, weekday, hour)

(course, period) -> GivenCourses.(course, period)
room -> Rooms.name

Rooms(name, #seats)

code, period → teacher ?

Quiz: Given values for a code and a period, starting from any relation where
they appear, is it possible to reach more than one teacher value by following
keys and references?

Answer: No, so the FD constraint is properly captured. No need to fix schema

Trivial FDs

• A FD is trivial if all attributes on the RHS
are also on the LHS.
– Example: course, period → course

Quiz: Is this a trivial FD?

course, period → course, name

Shorthand for
course, period → course (trivial)
course, period → name (not trivial)

Inferring FDs

• In general we can find more FDs
– course, period, weekday → room
– room → #seats

⇒ course, period, weekday → #seats

• We will need all FDs for doing a proper
design.

Closure of attribute set X

• Computing the closure of X means finding
all FDs that have X as the LHS.

• If A is in the closure of X, then X → A.
E.g. If teacher is in the closure of code, period
Then code, period → teacher

• The closure of X is written X+.
– X+ = all attributes that ”follow” from X

4

Computing the closure

• Given a set of FDs, F, and a set of
attributes, X:

1. Start with X+ = X.
2. For all FDs Y → B in F where Y is a subset of X+,

add B to X+.
3. Repeat step 2 until there are no more FDs that

apply.

Quiz!

What is the closure of
{code, period, weekday}?

code → name
code, period → #students
code, period → teacher
room → #seats
code, period, weekday → hour
code, period, weekday → room
room, period, weekday, hour → code

{code, period, weekday}+ =
{code, period, weekday, name, #students,
teacher, hour, room, #seats}

Finding all implied FDs: F+

• F+ is also called the closure of F

• Simple, exponential algorithm
For each set of attributes X in a relation R:
1. compute X+.
2. Add X → A to F+ for all A in X+ - X.
3. However, drop XY → A whenever we discover

X → A.
– Because XY → A follows from X → A.

Example: Finding F+

X = {code, period, weekday} (remember: must repeat for all other X too)
X+= {code, period, weekday, name, #students, teacher, hour,

room, #seats}

X+ - X= {name, #students, teacher, hour, room, #seats}

(1) code → name
(2) code, period → #students
(3) code, period → teacher
(4) room → #seats
(5) code, period, weekday → hour
(6) code, period, weekday → room
(7) room, period, weekday, hour → code

code, period, weekday → name

code, period, weekday → #students

code, period, weekday → teacher

code, period, weekday → hour

code, period, weekday → room

code, period, weekday → #seats

(1)

(2)

(3)

(5)

(6)

Implied: (6)+(4)

If X ⊆Y ⊆ X+

then Y+ == X+ and no new FDs will be found
e.g.
X = {code, period, weekday}
Y = {code, period, weekday, name, room}
X+= {code, period, weekday, name, #students, teacher, hour, room, #seats}

In particular, if X+ is the set of all attributes, then the
closure of all supersets of X will also be the set of all
attributes.

Finding F+: a simplifying trick

Y X+X

Finding keys
• For a relation R, any subset X of attributes of R

such that X+ contains all attributes of R is a
superkey of R.
– Intuitively, a superkey is any set of attributes that

determine all other attributes.
– The set of all attributes is a superkey.

• A key for R is a minimal superkey.
– A superkey X is minimal if no proper subset of X is

also a superkey.
• Minimal – no subset is a key
• Minimum – the smallest, i.e. the one with the fewest number

of attributes

5

Example:
X = {code, period, weekday, hour}
is a superkey of the relation Schedules since X+ is
the set of all attributes of Schedules.

However,
Y = {code, period, weekday}
is also a superkey, and is a subset of X, so X is
not a key of Schedules. No subset of Y is a
superkey, so Y is also a key.

Schedules(code, name, period, #students,
teacher, room, #seats, weekday, hour)

Quiz!

What is the key of Schedules?

code → name
code, period → #students
code, period → teacher
room → #seats
code, period, weekday → hour
code, period, weekday → room
room, period, weekday, hour → code

Two keys exist:
{code, period, weekday}
{room, period, weekday, hour}

Primary keys

• There can be more than one key for the
same relation.

• We choose one of them to be the primary
key, which is the key that we actually use
for the relation.

• Other keys could be asserted through
uniqueness constraints.
– E.g. for the self-referencing relation

Example:

Rooms(name, #seats)
NextTo(right, left)

right -> Rooms.name
left -> Rooms.name
left unique

For NextTo we have both

• left → right

• right → left

Both left and right are keys, but we have chosen
right to be the primary key for NextTo. We can add a
constraint stating that left should be unique.

Note: The syntax for constraints is not well specified. Both
the reference syntax, as well as the uniqueness assertion,
are my suggestions only (but they’re rather good).

Where do FDs come from?
• ”Keys” of entities (from ER diagram)

– If code is the key for the entity Course, then all other
attributes of Course are functionally determined by
code, e.g. code → name

• Relationships (from ER diagram)
– If all courses hold lectures in just one room, then the

key for the Course entity also determines all attributes
of the Room entity, e.g.
code → room

• Physical reality (domain description)
– No two courses can have lectures in the same room

at the same time, e.g.
room, period, weekday, hour → code

Make reality match theory

• In some cases reality is not suitably
deterministic. We may need to invent key
attributes in order to have a key at all.

Quiz: Give examples of this phenomenon from reality!

Social security numbers, course codes, product numbers,
user names etc.

6

How NOT to find FDs
• Do an E-R diagram, look at the entities and

many-to-one relationships, pick the proper FDs.

• FDs should be used to find more constraints,
and also to check that your diagram is correct. If
the FDs are taken from the diagram, no more
constraints will be added, and it will contain the
same errors!

Quiz: Why not?

Example: Scheduler domain
Courses(code, name)
GivenCourses(course, period, #students, teacher)

course -> Courses.code
Lectures(course, period, room, weekday, hour)

(course, period) -> GivenCourses.(course, period)
room -> Rooms.name

Rooms(name, #seats)

code → name
code, period → #students
code, period → teacher
room → #seats
code, period, weekday → hour
code, period, weekday → room
room, period, weekday, hour → code

Quiz: Fix the
schema!

Scheduler domain (fixed)
Courses(code, name)
GivenCourses(course, period, #students, teacher)

course -> Courses.code
Lectures(course, period, room, weekday, hour)

(course, period) -> GivenCourses.(course, period)
room -> Rooms.name
(room, period, weekday, hour) unique

Rooms(name, #seats)

code → name
code, period → #students
code, period → teacher
room → #seats
code, period, weekday → hour
code, period, weekday → room
room, period, weekday, hour → code

Add a key to
Lectures!

CSE wants you!
Student TA for LP3

• Why?
– Students help students best
– Also:

• 156 SEK/h without Master degree
• 184 SEK/h with Master degree

• Apply before November 13th 2016!
– http://www.chalmers.se/en/departments/cse/Pages/TeachingAss

istants.aspx
– https://goo.gl/TfFTxA

Break! In part 2:

BCNF decomposition
3NF

