
Database Usage
(and Construction)

Transactions

Lecture 10

Setting

• DBMS must allow concurrent access to
databases.
– Imagine a bank where account information is

stored in a database not allowing concurrent
access. Then only one person could do a
withdrawal in an ATM machine at the time –
anywhere!

• Uncontrolled concurrent access may lead
to problems.

Example:
Imagine a program that does the following:

1. Get a day, a time and a
course from the user in
order to schedule a
lecture. (get)

2. List all available rooms at
that time, with number of
seats, and let the user
choose one. (list)

3. Book the chosen room for
the given course at the
given time. (book)

SELECT *
FROM ROOMS
WHERE name NOT IN
(SELECT room
FROM Lectures
WHERE weekday = theDay
AND hour = theTime);

INSERT INTO Lectures VALUES
(theCourse, thePeriod,
theDay, theTime,
chosenRoom);

Running in parallel
• Assume two people, A and B, both try to book a

room for the same time, at the same time.
• Both programs perform the sequence
(get)(list)(book), in that order.

• But we can interleave the blocks of the two
sequences in any way we like!
– Here’s one possible interleaving:

A: (get) (list) (book)
B: (get) (list) (book)

Interleaving

A: (get) (list) (book)
B: (get) (list) (book)

time →

A lists all available
rooms at time T,

which includes VR.

B lists all available
rooms at time T,

which includes VR.

A decides to book
VR for her lecture.

B decides to book
VR for his lecture.
But now VR is no

longer free!

Quiz!

Look again at the interleaving:

What can we do to fix it?

A: (get) (list) (book)
B: (get) (list) (book)

time →

The only way that we get the desired behavior is if both A
and B may perform the operations (list)(book) without
the other doing a (book) in the middle!

Quiz!
Assume we run the following two programs in parallel, and

assume the databases contains only the Databases lecture
in room VR on Mondays (and all lectures are 2h long):

1. Insert a lecture for the
Databases course in room
VR at 10 on Mondays.
(ins)

2. Delete the lecture in the
Databases course in room
VR at 13 on Mondays.
(del)

1. Find the first lecture of the
day in room VR on Mondays.
(min)

2. Find the last lecture of the
day in room VR on Mondays.
(max)

3. Return the total time that
room VR is occupied,
((max+2)-min). (ret)

P1: P2:

P1 (ins)(del)
P2 (min)(max)(ret)

• Need to consider possible schedules of the actions that
access or update the database: (ins)(del)(min)(max)

(ins)(del)(min)(max) P2 returns 2
(ins)(min)(del)(max) P2 returns 2
(ins)(min)(max)(del) P2 returns 5
(min)(ins)(del)(max) P2 returns -1
(min)(ins)(max)(del) P2 returns 2
(min)(max)(ins)(del) P2 returns 2

…Quiz continued!

What could
P2 return?

Serializability
• Two programs are run in serial if one finishes

before the other starts.
• The running of two programs is serializable if the

effects are the same as if they had been run in
serial.
A: (get) (list) (book)
B: (get) (list) (book)

A: (get) (list)(book)
B: (get) (list)(book)

Not serializable Serializable

Example:
Assume we perform the following operations to
transfer 100 SEK from account X to account Y.

1. Check account
balance in account X.

2. Subtract 100 from
account X.

3. Add 100 to account Y.

SELECT balance
FROM Accounts
WHERE accountID = X;

UPDATE Accounts
SET balance = balance - 100
WHERE accountID = X;

UPDATE Accounts
SET balance = balance + 100
WHERE accountID = Y;

Two things can go wrong: We can have strange interleavings like
before. But also, assume the program crashes after executing 1 and 2
– we’ll have lost 100 SEK!

What could go wrong?

Example:
Assume we perform the following operations to
transfer 100 SEK from account X to account Y.

1. Check account
balance in account X.

2. Subtract 100 from
account X.

3. Add 100 to account Y.

SELECT balance
FROM Accounts
WHERE accountID = X;

UPDATE Accounts
SET balance = balance - 100
WHERE accountID = X;

UPDATE Accounts
SET balance = balance + 100
WHERE accountID = Y;

Two things can go wrong: We can have strange interleavings like
before. But also, assume the program crashes after executing 1 and 2
– we’ll have lost 100 SEK!

Atomicity

• For many programs, we require that ”all or
nothing” is executed.
– We say a sequence of actions is executed

atomically if it is executed either in entirety, or
not at all.

• The state in the middle is never visible from
outside the sequence.

• cf. Greek atom = indivisible.
• In case of a crash in the middle, any changes that

were made up until that point must be undone.

ACID Transactions
• A DBMS is expected to support ”ACID

transactions”, which are
– Atomic: Either the whole transaction is run, or

nothing.
– Consistent: Database constraints are

preserved.
– Isolated: Different transactions may not

interact with each other.
– Durable: Effects of a transaction are not lost

in case of a system crash.

Transactions in SQL
• SQL supports transactions, often behind the

scenes.
– An SQL statement is a transaction.

• E.g. an update of a table can’t be interrupted after half the
rows.

• Any triggers, procedures, functions etc. that are started by
the statement is part of the same transaction.

Controlling transactions
• We can explicitly start transactions using the
START TRANSACTION or BEGIN statement, and
end them using COMMIT or ROLLBACK:
– COMMIT causes an SQL transaction to complete

successfully.
• Any modifications done by the transaction are now permanent in

the database.
– ROLLBACK or ABORT causes an SQL transaction to end

by aborting it.
• Any modifications to the database must be undone.
• Rollbacks could be caused implicitly by errors e.g. division by 0.

Read-only vs. Read-write
• A transaction that does not modify the database

is called read-only.
– A read-only transaction can never interfere with

another transaction (but not the other way around!).
– Any number of read-only transactions can be run

concurrently.
• A transaction that both reads and modifies the

database is called read-write.
– No other transaction may write between the read and

write.

SET TRANSACTION

• We can hint the DBMS that a transaction
only does reading, by issuing the
statement:

– Possibly the DBMS can make use of the
information and optimize scheduling.

SET TRANSACTION READ ONLY;

Drawbacks

• Serializability and atomicity are necessary,
but don’t come without a cost.
– We must retain old data until the transaction

commits.
– Other transactions may need to wait for one

to complete.
• In some cases some interference may be

acceptable, and could speed up the
system greatly.

Example:
Recall the first example of booking rooms:

It could take time for the user to decide which
room to choose after getting the list. If we make
this a serializable transaction, all other users
would have to wait as well.

The worst thing that could happen is that B is told
to choose another room when he tries to book
the room that A just booked.

A: (get) (list) (book)
B: (get) (list) (book)

time →

Isolation levels

• ANSI SQL standard defines four isolation
levels, which are choices about what kinds
of interference are allowed between
transactions.

• Each transaction chooses its own isolation
level, deciding how other transactions may
interfere with it.

• Isolation level is defined in terms of three
phenomena that can occur.

Kinds of interference

The ANSI SQL standard describes:

• Dirty read
• Non-repeatable read
• Phantom

(These, and other kinds of interference, are discussed in: Berenson, H., Bernstein, P., Gray, J.,
Melton, J., O'Neil, E., & O'Neil, P. (1995). A critique of ANSI SQL isolation levels. ACM SIGMOD
Record, 24(2), 1-10.)

Dirty read

• Transaction T1 modifies a data item.
• Another transaction T2 then reads that

data item before T1 performs a COMMIT
or ROLLBACK.

• If T1 then performs a ROLLBACK, T2 has
read a data item that was never committed
and so never really existed.

Dirty read example

a b c
19

a b c

a b c
42

T1B := 19

…woops...

B := 42

COMMIT

T2
B? 19!

T2 performs dirty read
of uncommitted value

Non-repeatable read

• Transaction T1 reads a data item.
• Another transaction T2 then modifies or

deletes that data item and commits.
• If T1 then attempts to re-read the data

item, it receives a modified value or
discovers that the data item has been
deleted.

Non-repeatable read example

a b c
19

a b c
42

T2
B := 19
commit

T3
B := 42
commit

T1B? 19!

...

B? 42!

19 != 42
B changed during T1
due to non-repeatable

read

Phantom

• Transaction T1 reads a set of data items
satisfying some <search condition>.

• Transaction T2 then creates data items
that satisfy T1’s <search condition> and
commits.

• If T1 then repeats its read with the same
<search condition>, it gets a set of data
items different from the first read.

Phantom example

a b c

T2
Add 2 rows
commit

T1Data?

...

data?

Rows have changed and
phantom rows introduced

during T1
a b c

Choosing isolation level

• Within a transaction we can choose the
isolation level:

where X is one of

SET TRANSACTION ISOLATION LEVEL X;

• SERIALIZABLE
• READ COMMITTED
• READ UNCOMMITTED
• REPEATABLE READ

Isolation levels - differences

Dirty reads Non-repeatable
reads

Phantoms

READ
UNCOMMITTED

Yes Yes Yes

READ
COMMITTED

No Yes Yes

REPEATABLE
READ

No No Yes

SERIALIZABLE No No No

What kinds of interference are possible?

Increasing
Isolation
strictness

READ UNCOMMITTED

• If a transaction is run with isolation level
READ UNCOMMITTED, then the transaction
allows other transactions to modify the
database while running.

• Anything that is changed by another
transaction affects the reads of this
transaction, even if the other transaction
has not yet committed!

READ COMMITTED

• If a transaction is run with isolation level
READ COMMITTED, then the transaction
allows other transactions to modify the
database while running.

• Anything that is committed by another
transaction affects the reads of this
transaction.

REPEATABLE READ

• If a transaction is run with isolation level
REPEATABLE READ, it works like read
committed, except:

• If the transaction reads more than once,
we are guaranteed to get at least the
same tuples again (though we could get
more).

SERIALIZABLE

• If a transaction is run with isolation level
SERIALIZABLE, then no other transaction
may interfere with it in any way.
– Examples:

If two room booking transactions are run serializable,
then a booking for a room that was listed as free will
always succeed, and transactions must wait for other
transactions to finish.

In the min-max example, we always get a value that is
correct at some point in time, either before or after the
updating.

Quiz!
If we extend the room booking transaction with a

confirmation, i.e. (list)(book)(confirm),
and run two in parallel with isolation level READ
UNCOMMITTED, what could happen?

Same as with READ COMMITTED, except that
if the user of the first transaction changes her
mind at confirmation, thus causing a roll-back,
the second user could be told that the room is
booked even though it never was!

Quiz!

If we run two room booking transactions,
(list)(book), in parallel with isolation
level READ COMMITTED, what would
happen?

One transaction could book a room after the
other had listed it as free, and the second
booking may fail.
On the other hand, no transaction must wait
for any other to finish.

Quiz!

If we run two room booking transactions,
(list)(book), in parallel with isolation
level REPEATABLE READ, what would
happen?

Exactly the same thing as for READ
COMMITTED, since we only read once!

Quiz again!
If we run the first transactions of the min-max

example as READ UNCOMMITTED, what could
happen?

The update could be done between (min) and (max),
which means we could get the value -1.
Even if the updating is run SERIALIZABLE, we could
see the state between (ins) and (del), so the value 5
is also possible in this case!

Remember: Isolation level is a personal choice. Only because
the min-max transaction is read-only can we run it in the
middle of a serializable transaction!

Quiz again!

If we run the first transactions of the min-
max example, ((min)(max) and
(ins)(del)), as READ COMMITTED,
what could happen?

The update could be done between min and max, which
means we could get the value -1.
If the updating is run SERIALIZABLE, we could not see
the state between since the changes would not be
committed, so the value 5 is not possible.

Quiz again!
If we run the first transactions of the min-max

example as REPEATABLE READ, what could
happen?

If the update is done between (min) and (max), we will
still see the deleted value when doing (max), so we can
only get the value 2.

… but if we do (max)(min) instead, we would get the value 5…

Summary transactions
• DBMS must ensure that different

processes don’t interfere with each other!
– ”ACID”: Atomicity, Consistency, Isolation,

Durability.
– The isolation levels of transactions may vary.

• Serializable
• Read Committed
• Read Uncommitted
• Repeatable Read

– Isolation level affects only that transaction!

Next time, Lecture 11
Database Optimization:

Indexes
Non-natural keys
Denormalization

