
Transactions
Isolation

Concurrency means
Trouble

Several processes
manipulating the same
data at the same time
can lead to
inconsistencies

Transferring Money

(Basic)Database operation (Insert, Update) are atomic.

Sometimes we cannot write one single basic atomic operation

Subtract 10$ from account X

Add 10$ to account Y

What problems can occur? Power failure, account Y has some constraints(or
doesn’t exist)

Transaction

Sequence of one or more SQL operations treated as a unit

Operations may be interleaved

Inconsistency

Solution to concurrency and system failure.

ACID guarantee that database transactions are processed reliably.

ACID

Atomicity : requires that each transaction be "all or nothing": if one part of the transaction fails, the
entire transaction fails, and the database state is left unchanged. (rollback) , transfer is cancelled.

Consistency : ensures that any transaction will bring the database from one valid state to another.
(E.x No money will be created or disappear)

Isolation : The isolation property ensures that the concurrent execution of transactions results in a
system state that would be obtained if transactions were executed serially

Durability :The durability property ensures that once a transaction has been committed, it will
remain so, even in the event of power loss, crashes, or errors.

Read phenomena

Dirty Read -- Read a uncommitted value that is modified by another transaction. This value is not consistant as if the other
transaction crashes (or rollback) the value is not valid anymore. There in no dirty read inside a transaction

Non-repeatable Read -- a session can read a row in a transaction. Another session then changes the row (UPDATE or
DELETE) and commits its transaction. If the first session subsequently re-reads the row in the same transaction, it will see the
change.

Phantoms -- a session can read a set of rows in a transaction that satisfies a search condition (which might be all rows).
Another session then generates a row (INSERT) that satisfies the search condition and commits its transaction. If the first session
subsequently repeats the search in the same transaction, it will see the new row.

Isolation levels

1- Serializable (highest level, No interference) Requires read and write locks (acquired on selected data) to
be released at the end of the transaction. Also range-locks must be acquired when a SELECT query uses a ranged WHERE clause
(avoid the phantom reads phenomenon)

4- Repeatable reads 1) No dirty read, 2)a value of an item does not change after multiple read, but new items can be
added/interfere meanwhile. Read and write locks (acquired on selected data) until the end of the transaction. However, range-locks are
not managed, so phantom reads can occur

3- Read committed They don’t perform dirty read. but non-repeatable reads phenomenon can occur in this isolation level
if other transaction commit between reads. it keeps write locks (acquired on selected data) until the end of the transaction, but read
locks are released as soon as the SELECT operation is performed. As in the previous level, range-locks are not managed.

2- Read uncommitted (lowest level) dirty reads are allowed, so one transaction may see not-yet-committed
changes made by other transactions.

Locks

Read lock

Write Lock

Range Lock !

Isolation summary
Dirty Reads Non-repeatable Reads Phantoms

Read Uncommitted Y Y Y

Read Committed N Y Y

Repeatable Read N N Y

Serializable N N N

Anomaly - Dirty reads

/* Transaction 1 */
SELECT age FROM users WHERE id = 1;
/* will read 20 */

/* Transaction 2 */
UPDATE users SET age = 21 WHERE id = 1;
/* No commit here */

/* Transaction 1 */
SELECT age FROM users WHERE id = 1;
/* will read 21 */

ROLLBACK; /* lock-based DIRTY READ */

Anomaly - Non-repeatable reads

/* Transaction 1 */
SELECT * FROM users WHERE id = 1;

/* Transaction 2 */
UPDATE users SET age = 21 WHERE id = 1;
COMMIT; /* in multiversion concurrency
 control, or lock-based READ COMMITTED */

/* Transaction 1 */
SELECT * FROM users WHERE id = 1;
COMMIT; /* lock-based REPEATABLE READ */

Anomaly - Phantom Reads

/* Transaction 1 */
SELECT * FROM users WHERE age BETWEEN 10 AND 30;

/* Transaction 2 */
INSERT INTO users(id,name,age) VALUES (3, 'Bob', 27);
COMMIT;

/* Transaction 1 */
SELECT * FROM users WHERE age BETWEEN 10 AND 30;
COMMIT;

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;

https://www.youtube.com/watch?v=NHKHzwolbKU

References

https://en.wikipedia.org/wiki/Isolation_%28database_systems%29

http://www.firstsql.com/tutor5.htm

https://db.apache.org/derby/docs/10.3/devguide/cdevconcepts15366.html

https://en.wikipedia.org/wiki/Isolation_%28database_systems%29
https://en.wikipedia.org/wiki/Isolation_%28database_systems%29
http://www.firstsql.com/tutor5.htm
http://www.firstsql.com/tutor5.htm
https://db.apache.org/derby/docs/10.3/devguide/cdevconcepts15366.html
https://db.apache.org/derby/docs/10.3/devguide/cdevconcepts15366.html

