
Databases Exam

TDA357 (Chalmers), DIT620 (University of Gothenburg)

7 June 2017, 14:00-18:00

Department of Computer Science and Engineering

Course responsible Steven Van Acker (EDIT 5472). Steven will visit the exam rooms around 15:00 and 17:00.

Results Will be published by the end of June 2017 at the latest.

Exam review See the course web page for time and place:
http://www.cse.chalmers.se/edu/year/2016/course/TDA357/HT2016/

Grades Chalmers: 24 for 3, 36 for 4, 48 for 5. GU: 24 for G, 42 for VG.

Help material One cheat sheet, which is an A4 sheet with hand-written notes. You may write on both sides of
that sheet. If you bring a sheet, it must be handed in with your answers to the exam questions. Appended
to this exam paper is a standardized cheat sheet you may use as well. One English language dictionary is
also allowed.

Specific instructions Answer questions in English. Begin the answer to each question (numbers 1 to 6) on a
new page. The a,b,c,. . . parts with the same number can be on the same page.

Write clearly unreadable = wrong! Fewer points are given for unnecessarily complicated solutions. Indicate
clearly if you make any assumptions that are not given in the question. In SQL questions, use standard
SQL or PostgreSQL. If you use any other variant (such as Oracle or MySQL), say this; but full points are
not guaranteed since this may change the nature of the question.

1 of 6

1 E-R Modelling (2 parts, 12p)

Suppose you are given the following requirements for a simple database for a single season in the National Hockey
League (NHL):

• the NHL has many teams,
• each team has a name, a city, a coach and a set of players,
• each player belongs to maximum one team,
• a team’s name is only unique in their own city
• each player has a name, a unique person number (abbreviated as “pn”), a position (such as left wing or

goalie), a skill level, and a set of injury records,
• an injury record has a description and an id, but the id on its own is not unique (the combination of person

number and injury record id is unique),
• a game is played between two teams (referred to as host and guest) and has a date (such as May 11th,

1999) and a score (such as 4 to 2).
• there can be only 2 games per couple of teams (A, B) per season: one where A is the host and B the guest,

and the other where B is the host and A is the guest
• a team can not play a game against itself

1a. Draw an Entity-Relationship diagram for this domain, listing any assumptions you make. Do not use
multivalued attributes. (7p).

1b. Give the corresponding relational database schema (5p).

2 Functional dependencies and normal forms (4 parts, 10p)

Suppose we have relation

R(A, B, C, D, E, F, G)

and functional dependencies

BC ! D, DE ! F , FA ! B, BC ! G.

2a. Relation R has three keys. State, with reasons, which two of the following are not keys of R:

• {A, B, C, D}
• {A, B, C, E}
• {A, C, D, E}
• {A, C, D, E, G}
• {A, C, E, F}

(2p)

2b. Decompose relation R to BCNF. Show each step in the normalisation process, and at each step indicate
which functional dependency is being used. (3p)

2c. State, with reasons, which FD(s) of relation R violate Third Normal Form (3NF). (2p)

2d. Decompose relation R to 3NF. (3p)

2 of 6

3 SQL tables and queries (3 parts, 10p)

A database system used by a company’s personnel department has the following relations:

Employees(empId, name, year, salary, entitlement, branch)
ParentalLeave(employee, startDay, startYear, endDay, endYear)

Employee identifiers (empId) are unique. Attribute year is the employee’s year of birth. Attribute entitlement
is the number of annual vacation days to which the employee is entitled. Employees have 30 days of annual
vacation entitlement by default. Branch is the name of the city where the branch is located (assume that there
is only one branch in each city). The personnel department keeps a record of all periods of parental leave taken
by employees. The attributes startDay and endDay are integers in the range 1-366 that represent the day within
the year. For each period of parental leave, the start date must be before the end date.

3a. Suggest keys and references for these relations. Write SQL statements that create these relations with
reasonable constraints in PostgreSQL. (4p)

3b. Show an SQL query to get the amount of employees per branch that have/had parental leave spanning a
period in two di↵erent calendar years (this means startYear and endYear are not the same). Example
output row if the Stockholm branch has had 3 such employees: (’Stockholm’, 3). (3p)

3c. Show an SQL query to get the branch name and average of salaries in that branch, for those branches that
only have employees born after 1987. Sort the output by average salary. Do not show information about
branches that have employees born in or before 1987. (3p)

4 Relational algebra (2 parts, 8p)

A multi-national company uses a relational database to manage information about its o�ces in di↵erent cities,
and its employees. This database has the following relations:

Offices(city, supplement)
Departments(city, dname, departmentHead)
Employees(empId, name, salary, dept, city)

The company has one o�ce in each city, and several departments can be located at each o�ce. Attribute
supplement is the monthly salary supplement that each employee working at that o�ce receives (e.g. employees at
the London o�ce might receive a supplement of 1000 SEK per month to cover higher living costs in London). The
default city supplement is 0 SEK. Attribute dname describes the departments function (e.g. sales or personnel).
Attribute departmentHead is the employee identifier of the head of the department. Employee identifiers (empId)
are unique. Attribute salary is an employees basic monthly salary. The total monthly salary for an employee can
be calculated by adding the city supplement to the employees basic monthly salary.

4a. Write a relational algebra expression that finds the employee identifier, name and total monthly salary of
all employees (recall that the total monthly salary for an employee can be calculated by adding the city
supplement to the employees basic monthly salary). The results should be sorted by employee name. (4p)

4b. Write a relational algebra expression that finds the names of cities where there is a sales department (named
“sales”) and, for each of these departments, the average basic salary of the employees in that department.
You can assume that every department has at least one employee. (4p)

3 of 6

5 Views, Triggers (2 parts, 8p)

In the year 2127, the first spaceship to colonize Mars carries 1337 colonists. When they arrive on the planet,
they will build a city and live there. Following democratic principles, the spaceship captain, captain Picard, asks
you to improve an SQL database to help with the voting process.

The existing SQL database was created with the following statement:

CREATE TABLE Votes (
cityname TEXT PRIMARY KEY,
votecount INT

) ;

To add a vote, you can use either INSERT or UPDATE, as shown below:

INSERT INTO Votes (cityname , votecount) VALUES(’Mars City One ’ , 3 4) ;
INSERT INTO Votes (cityname , votecount) VALUES(’New Gothenburg ’ , 1 1) ;
INSERT INTO Votes (cityname , votecount) VALUES(’ P i ca rd ia ’ , 1) ;
UPDATE Votes SET votecount=votecount+3 WHERE cityname=’New Gothenburg ’ ;

5a. Create a new VIEW called “VoteSummary” which outputs 2 columns named “cityname” and “percentage”
containing the cityname and percentage of votes cast for that cityname. The output is sorted according to
the votecount, highest votecount first. After the example votes above, there would be 34 votes for “Mars
City One” out of a total of 49 votes, so the top row of the “VoteSummary” VIEW would be (’Mars City
One’, 69.3878). There is no need to round o↵ the percentage. (3p)

5b. Create a trigger to update the “Votes” table, to keep track of how many colonists have not voted yet. This
count will appear next to the special cityname “<not voted>”. In the example above, 49 votes have been
cast out of 1337 possible votes. This means the trigger needs to create or update an entry with cityname
“<not voted>” and votecount 1288 (= 1337 - 49). Keep in mind that you need to create this entry if it
does not exist yet. There is no need for a trigger on DELETE. Be careful with infinite recursion! (5p)

4 of 6

6 Authorization, SQL Injection, Transactions (3 parts, 12p)

Consider an existing database with the following database definition in a PostgreSQL DBMS:

CREATE TABLE Users (
id INTEGER PRIMARY KEY ,
name TEXT ,
password TEXT

);

CREATE TABLE UserStatus (
id INTEGER PRIMARY KEY REFERENCES Users ,
loggedin BOOLEAN NOT NULL

);

CREATE TABLE Logbook (
id INTEGER REFERENCES Users ,
timestamp INTEGER ,
name TEXT ,
PRIMARY KEY (id , timestamp)

);

6a. A database user “Alice” is granted the following permissions:

GRANT SELECT(id , name , password) ON Users TO Al i c e ;
GRANT SELECT(id , l ogged in) ON UserStatus TO Al i c e ;
GRANT INSERT(id , l ogged in) ON UserStatus TO Al i c e ;
GRANT SELECT(id , timestamp , name) ON LogBook TO Al i c e ;

Alice now executes the following SQL statement:

INSERT INTO LogBook
SELECT u . id , 201706071400 , u . name

FROM (UserStatus us JOIN Users u ON us . id = u . id)
WHERE us . l ogged in = True ;

We want Alice to only have exactly the privileges that are necessary to complete this SQL statement. Does
Alice have the correct privileges? What minimal set of permissions should she be granted instead, if not
the same as listed above? (4p)

6b. Users of a web application are allowed to query this database for a certain user id. This functionality is
implemented in JDBC using the following code fragment:

. . .
S t r ing query = ”SELECT ⇤ FROM UserStatus WHERE id = ’ ” + user input + ” ’ ” ;
Statement stmt = conn . createStatement () ;
Resu l tSet r s = stmt . executeQuery (query) ;
. . .

The userinput variable is controlled directly by an attacker. What can an attacker input into userinput
so that the SQL query returns all data in UserStatus? What is this specific security problem called? How
should the above code be corrected to prevent this problem? (4p)

6c. The following transaction calculates the total number of entries in UserStatus as the sum of the number of
logged-in and not logged-in users.

BEGIN TRANSACTION ISOLATION LEVEL READ COMMITTED;
SELECT

(SELECT COUNT(⇤) FROM UserStatus WHERE l ogged in = True)
+
(SELECT COUNT(⇤) FROM UserStatus WHERE l ogged in = False) ;

COMMIT;

The used transaction isolation level is not su�cient to ensure an accurate count of entries in UserStatus.
Why not? Give all isolation levels that are su�cient so that the query works as expected. (4p)

5 of 6

A Standardized cheat sheet

6 of 6

E-R diagrams and database schemas

Functional dependencies

Definition (tuple, attribute, value). A tuple has the form

{A1 = v1, . . . , An = vn}

where A1, . . . , An are attributes and v1, . . . , vn are their values.
Definition (signature, relation). The signature of a tuple, S, is the set of all its attributes, {A1, . . . , An}. A relation

R of signature S is a set of tuples with signature S. But we will sometimes also say ”relation” when we mean the
signature itself.
Definition (projection). If t is a tuple of a relation with signature S, the projection t.Ai computes to the value vi.
Definition (simultaneous projection). If X is a set of attributes {B1, . . . , Bm} ✓ S and t is a tuple of a relation with
signature S, we can form a simultaneous projection,

t.X = {B1 = t.B1, . . . , Bm = t.Bm}

Definition (functional dependency, FD). Assume X is a set of attributes and A an attribute, all belonging to a
signature S. Then A is functionally dependent on X in the relation R, written X ! A, if

• for all tuples t,u in R, if t.X = u.X then t.A = u.A.
If Y is a set of attributes, we write X ! Y to mean that X ! A for every A in Y.
Definition (multivalued dependency, MVD). Let X,Y,Z be disjoint subsets of a signature S such that S = X [Y [Z.
Then Y has a multivalued dependency on X in R, written X !! Y , if

• for all tuples t,u in R, if t.X = u.X then there is a tuple v in R such that
– v.X = t.X
– v.Y = t.Y
– v.Z = u.Z

1

Definition. An attribute A follows from a set of attributes Y, if there is an FD X ! A such that X ✓ Y .
Definition (closure of a set of attributes under FDs). The closure of a set of attributes X ✓ S under a set FD of
functional dependencies, denoted X+, is the set of those attributes that follow from X.
Definition (trivial functional dependencies). An FD X ! A is trivial, if A 2 X.
Definition (superkey, key). A set of attributes X ✓ S is a superkey of S, if S ✓ X+.
A set of attributes X ✓ S is a key of S if

• X is a superkey of S
• no proper subset of X is a superkey of S

Definition (Boyce-Codd Normal Form, BCNF violation). A functional dependency X ! A violates BCNF if
• X is not a superkey
• the dependency is not trivial

A relation is in Boyce-Codd Normal Form (BCNF) if it has no BCNF violations.
Definition (prime). An attribute A is prime if it belongs to some key.
Definition (Third Normal Form, 3NF violation). A functional dependency X ! A violates 3NF if

• X is not a superkey
• the dependency is not trivial
• A is not prime

Definition (trivial multivalued dependency). A multivalued dependency X !! A is trivial if Y ✓ X or X [Y = S.
Definition (Fourth Normal Form, 4NF violation). A multivalued dependency X !! A violates 4NF if

• X is not a superkey
• the MVD is not trivial.

Algorithm (BCNF decomposition). Consider a relation R with signature S and a set F of functional dependencies.
R can be brought to BCNF by the following steps:

1. If R has no BCNF violations, return R
2. If R has a violating functional dependency X ! A, decompose R to two relations

• R1 with signature X [{A}
• R2 with signature S � {A}

3. Apply the above steps to R1 and R2 with functional dependencies projected to the attributes contained in each
of them.

Algorithm (4NF decomposition). Consider a relation R with signature S and a set M of multivalued dependencies.
R can be brought to 4NF by the following steps:

1. If R has no 4NF violations, return R
2. If R has a violating multivalued dependency X !! Y , decompose R to two relations

• R1 with signature X [{Y }
• R2 with signature S � Y

3. Apply the above steps to R1 and R2
Concept (minimal basis of a set of functional dependencies; not a rigorous definition). A minimal basis of a set F
of functional dependencies is a set F- that implies all dependencies in F. It is obtained by first weakening the left hand
sides and then dropping out dependencies that follow by transitivity. Weakening an LHS in X ! A means finding a
minimal subset of X such that A can still be derived from F-.
Algorithm (3NF decomposition). Consider a relation R with a set F of functional dependencies.

1. If R has no 3NF violations, return R.
2. If R has 3NF violations,

• compute a minimal basis of F- of F
• group F- by the left hand side, i.e. so that all depenencies X ! A are grouped together
• for each of the groups, return the schema XA1 . . . An with the common LHS and all the RHSs
• if one of the schemas contains a key of R, these groups are enough; otherwise, add a schema containing just

some key

2

Relational algebra

relation ::=

relname name of relation (can be used alone)

| �
condition

relation selection (sigma) WHERE

| ⇡
projection+

relation projection (pi) SELECT

| ⇢
relname (attribute+)?

relation renaming (rho) AS

| �
attribute*,aggregationexp+

relation

grouping (gamma) GROUP BY, HAVING

| ⌧
expression+

relation sorting (tau) ORDER BY

| � relation removing duplicates (delta) DISTINCT

| relation ⇥ relation cartesian product FROM, CROSS JOIN

| relation [relation union UNION

| relation \ relation intersection INTERSECT

| relation � relation di↵erence EXCEPT

| relation ./ relation NATURAL JOIN

| relation ./
condition

relation theta join JOIN ON

| relation ./
attribute+

relation INNER JOIN

| relation ./o
attribute+

relation FULL OUTER JOIN

| relation ./oL
attribute+

relation LEFT OUTER JOIN

| relation ./oR
attribute+

relation RIGHT OUTER JOIN

projection ::=

expression expression, can be just an attribute

| expression ! attribute rename projected expression AS

aggregationexp ::=

aggregation(*|attribute) without renaming

| aggregation(*|attribute) ! attribute with renaming AS

expression, condition, aggregation, attribute ::=

as in SQL, but excluding subqueries

3

SQL

statement ::= type ::=
CREATE TABLE tablename (CHAR (integer) | VARCHAR (integer) | TEXT

* attribute type inlineconstraint* | INT | FLOAT
* [CONSTRAINT name]? constraint
) ; inlineconstraint ::= ## not separated by commas!

| PRIMARY KEY
DROP TABLE tablename ; | REFERENCES tablename (attribute) policy*

| | UNIQUE | NOT NULL
INSERT INTO tablename tableplaces? values ; | CHECK (condition)

| | DEFAULT value
DELETE FROM tablename

? WHERE condition ; constraint ::=
| PRIMARY KEY (attribute+)

UPDATE tablename | FOREIGN KEY (attribute+)
SET setting+ REFERENCES tablename (attribute+) policy*

? WHERE condition ; | UNIQUE (attribute+) | NOT NULL (attribute)
| | CHECK (condition)

query ;
| policy ::=

CREATE VIEW viewname ON DELETE|UPDATE CASCADE|SET NULL
AS (query) ; ## alternatives: CASCADE and SET NULL

|
ALTER TABLE tablename tableplaces ::=

+ alteration ; (attribute+)
|

COPY tablename FROM filepath ; values ::=
postgresql-specific, tab-separated VALUES (value+) ## VALUES only in INSERT

| (query)
query ::=

SELECT DISTINCT? columns setting ::=
? FROM table+ attribute = value
? WHERE condition
? GROUP BY attribute+ alteration ::=
? HAVING condition ADD COLUMN attribute type inlineconstraint*
? ORDER BY attributeorder+ | DROP COLUMN attribute

|
query setoperation query localdef ::=

| WITH tablename AS (query)
query ORDER BY attributeorder+

no previous ORDER in query columns ::=
| * ## literal asterisk

WITH localdef+ query | column+

table ::= column ::=
tablename expression

| table AS? tablename ## only one iteration allowed | expression AS name
| (query) AS? tablename
| table jointype JOIN table ON condition attributeorder ::=
| table jointype JOIN table USING (attribute+) attribute (DESC|ASC)?
| table NATURAL jointype JOIN table

setoperation ::=
condition ::= UNION | INTERSECT | EXCEPT

expression comparison compared
| expression NOT? BETWEEN expression AND expression jointype ::=
| condition boolean condition LEFT|RIGHT|FULL OUTER?
| expression NOT? LIKE ’pattern*’ | INNER?
| expression NOT? IN values
| NOT? EXISTS (query) comparison ::=
| expression IS NOT? NULL = | < | > | <> | <= | >=
| NOT (condition)

4

compared ::=
expression ::= expression

attribute | ALL|ANY values
| tablename.attribute
| value operation ::=
| expression operation expression "+" | "-" | "*" | "/" | "%"
| aggregation (DISTINCT? *|attribute) | "||"
| (query)

pattern ::=
value ::= % | _ | character ## match any string/char

integer | float | string ## string in single quotes | [character*]
| value operation value | [^ character*]
| NULL

aggregation ::=
boolean ::= MAX | MIN | AVG | COUNT | SUM

AND | OR

triggers ## privileges

functiondefinition ::= statement ::=
CREATE FUNCTION functionname() RETURNS TRIGGER AS $$ GRANT privilege+ ON object TO user+ grantoption?
BEGIN | REVOKE privilege+ ON object FROM user+ CASCADE?

* triggerstatement | REVOKE GRANT OPTION FOR privilege
END ON object FROM user+ CASCADE?
$$ LANGUAGE ’plpgsql’ | GRANT rolename TO username adminoption?
;

privilege ::=
triggerdefinition ::= SELECT | INSERT | DELETE | UPDATE | REFERENCES

CREATE TRIGGER triggernane | ALL PRIVILEGES ## | ...
whentriggered
FOR EACH ROW|STATEMENT object ::=

? WHEN (condition) tablename (attribute+)+ | viewname (attribute+)+
EXECUTE PROCEDURE functionname | trigger ## | ...
;

user ::= username | rolename | PUBLIC
whentriggered ::=

BEFORE|AFTER events ON tablename grantoption ::= WITH GRANT OPTION
| INSTEAD OF events ON viewname

adminoption ::= WITH ADMIN OPTION
events ::= event | event OR events
event ::= INSERT | UPDATE | DELETE ## transactions

triggerstatement ::= statement ::=
IF (condition) THEN statement+ elsif* END IF ; START TRANSACTION mode* | BEGIN | COMMIT | ROLLBACK

| RAISE EXCEPTION ’message’ ;
| statement ; ## INSERT, UPDATE or DELETE mode ::=
| RETURN NEW|OLD|NULL ; ISOLATION LEVEL level

| READ WRITE | READ ONLY | NOT? DEFERRABLE
elsif ::= ELSIF (condition) THEN statement+

level ::=
SERIALIZABLE | REPEATABLE READ | READ COMMITTED

| READ UNCOMMITTED

indexes

statement ::=
CREATE INDEX indexname ON tablename (attribute+)?

5

XML

document ::= header? dtd? element
starttag ::= < ident attr* >

header ::= "<?xml version=1.0 encoding=utf-8 standalone=no?>" endtag ::= </ ident >
standalone=no if with DTD emptytag ::= < ident attr* />

dtd ::= <! DOCTYPE ident [definition*]> attr ::= ident = string ## string in double quotes

definition ::= ## XPath
<! ELEMENT ident rhs >

| <! ATTLIST ident attribute* > path ::=
axis item cond? path?

rhs ::= | path "|" path
EMPTY | #PCDATA | ident
| rhs"*" | rhs"+" | rhs"?" axis ::= / | //
| rhs , rhs
| rhs "|" rhs item ::= "@"? (ident*) | ident :: ident

attribute ::= ident type #REQUIRED|#IMPLIED cond ::= [exp op exp] | [integer]

type ::= CDATA | ID | IDREF exp ::= "@"? ident | integer | string

element ::= starttag element* endtag | emptytag op ::= = | != | < | > | <= | >=

Grammar conventions

• CAPITAL words are SQL or XML keywords, to take literally
• small character words are names of syntactic categories, defined each in their own rules
• | separates alternatives
• + means one or more, separated by commas in SQL, by white space in XML
• * means zero or more, separated by commas in SQL, by white space in XML
• ? means zero or one
• in the beginning of a line, + * ? operate on the whole line; elsewhere, they operate on the word just before
• ## start comments, which explain unexpected notation or behaviour
• text in double quotes means literal code, e.g. "*" means the operator *
• other symbols, e.g. parentheses, also mean literal code (quotes are used only in some cases, to separate code

from grammar notation)
• parentheses can be added to disambiguate the scopes of operators, in both SQL and XML

6

