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Roadmap on Public Key Encryption

Lecture 06:
Introduction to Number Theory

Lecture 07:

Recap on RSA

Factoring and Dlog problems

Recap on Group Theory

ElGamal encryption scheme

Recap on PKE

Key exchange protocols (Needham-Schroeder)

Lecture 08:

Key exchange protocols (DifPe-Hellman)

IdentiPcation protocol (Fiat-Shamir)

Quick look at Zero-Knowledge (ZK) and Sigma () protocols
Recap : security notions / number theory

Old exams
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Recap: Textbook RSA encryption scheme

. . _—
(useful at the exercise sessions / exam 9 )

- W

Textbook RSA
KeyGen(\ ) = (pk, sk) : - check lec06 for details -
’ Euler’s phi (or totient) function

1. generate two distinct A-bit primes p and g, compute N=pg and (N ).

2. choose an integer € !~ Zn such that GCD(e, N) =1 and

compute its (modular) inverse d =€ ' mod ! (N)

3.set:pk=(N,e)andsk=(N, d).

Enc(pk, #):Zy — Zy
Enc(pk,m)=c=m° mod N

Dec(sk,#): Zy "' Zy
Dec(sk,c)=m=c® modN
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Textbook RSA: correctness

Do ciphertexts decrypt correctly?

CORRECTNESS EQUATION. Dec( sk, Enc (pk, m ))=m

Letc= Enc (pk,m)=m®mod N

Then, Dec(sk,c)= c9mod N! (m€)d mod N

I m® mod N
buted=1mod ¥(N)
by Euler Theorem
a M1 1mod N
o (n)+L
that is: a 'amod N | m mod N
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'security’ of the RSA public key

/ Iy

Where does the computational
hardness come from?

hard to compute

&)
It Is easy to compute eL if one knows P.gd,
(or even¥(N) ); butnot if one only knows N=pq

Run time exp(O(® n)) for n-bit integer.

Current world record: RSA-768 bits (232 digits) o s FIE) SIEgR

(NFS) Algorithm
m Work: two years on hundreds of machines for integer factorisation

m Factoring a 1024-bit integer: about 1000 times harder

" likely possible this decade " Better to use 2048 bits integers
5 /28



Principles of Modern Cryptography.

if you don’t understand what you want to
achieve how can you possibly know when
(or if) you have achieved it?

- seen in lec02 -

lecO07 PKE (ElGamal,Protocols)
Flashback: how to define security of a PKE scheme?

1. Formal Definitions
- seen in lec05 -

2. Precise Assumptions

3. Proof of Security

vy

In the next slides we look to two
classical hardness assumptions

6 /og
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Number-theoretic problems that are conjectured to be 'hard’ 1

Modern cryptography is (almost) always based on the assumption that a certain problem
cannot be solved e! ciently, i.e., in polynomial time (computationally hard problem ).

The Factoring Problem ‘ “Seg

Given a composite integer N, the factoring problem is Nt
to bnd its decomposition in prime factions.

(e.g. for RSA, this means to bnd p, g such that pg =N )

When the number N is very large, no polynomial-time (non-quantum) algorithm
for integer factorization is known. The best known algorithm to factor composite
numbers is the the Number Field Sieve (NFS) - see previous slide for details -

Other algorithms: Wheel factorization, Pollard's rho, Lenstra (elliptic curve factorization), Fermat's
factorization method

For quantum computers, Shor (1994) discovered an algorithm to factorise
composite in polynomial time. In 2001, the Prst seven-qubit quantum computer
ran Shor's algorithm and could factorise 15 =5 * 3.
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Number-theoretic problems that are conjectured to be 'hard’ 2

Modern cryptography is (almost) always based on the assumption that a certain problem
cannot be solved e! ciently, i.e., in polynomial time (computationally hard problem ).

The Discrete Logarithm (Dlog) Problem
Given a cyclic group G, with generator g, (G =<g >) and,a
random element h'! G, compute Iogg( h),le., thex! {0,1,E
ord(G) } such that g* = h. d

Cq
NN T
¢ ke, Omg 94,
i @,\,C, /'D/\/\ )

Known algorithms to Pnd the Dlog: Baby-step giant-step, 9 //79/9/7&[0 a/ .
PohligbHellman algorithm Pollard's rho for logarithms L Pt ;@S,
A 7 -

A cyclic group, is of the form G ={ g° g!, E g|G| }, and g is called the generator
of G. Thus, for every elementh ! G, there exists a unique x! Zjg|such that h = g*,
X Is called the discrete logarithm of h with respect to g.
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Textbook RSA: security

s the textbook RSA encryption secure? ¢c= m® mod N

An Attacker would have to compute m from m® =cmod N { _Jingt

. e .
Can an Attacker recover m is some other way? 5 facton!

YES because textbook RSA encryption is deterministic

so, for a bx (pk, sk) pair, a messagem, always encrypts to the

same ciphertext m® and the attacker can easily replay messages
or check if a message has already been sentE

this means that textbook RSA is not semantically secure
9 /28
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RSA Is not semantically secure (under IND-CPA) .
(useful at the exercise sessions / exam \_/ )

Exercise: prove that the textbook-RSA encryption scheme is not secure under IND-CPA

Solution: (explain how the textbook-RSA and IND-CPA work). lec05 Primality test RSA & PKE securit
Security notion: IND-CPA (Chosen Plaintext Attack) .

choose two messages Attacker c

my ! m, , with len(my)=len(m,)
compute c, = Enc(pk, my)
and ¢, = Enc(pk, m,)

A Challenger
pk

A can perform polynomially-many < KeyGen (! ) |
encryptions of messages of his choice

E —— >  bIR{0,1}
_ c! Enc(pk, myp)

]
DEFINITION

An asymmetric cipher ( KeyGen, Enc, Dec ) is
secure under IND-CPA if for any PPT adversary,

it holds that: P(b= b') < %_,_ negligible

(pk, sk)

send m,, m, to
the Challenger

get the challenge
ciphertext ¢ and check: I *

if ¢ = ¢, output bC- 0,

otherwise output bGe 1. I—I

Let W, be the even that Cchose b! {0,1}, and A outputs bO=0
Then:  P(A wins the game) =| P(W,)-PW,)| =]1-0|=1. (TOT5,
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Is there an 'easy' PKE system that is randomised?

Taher Elgamal () ( %"'!) (born 18 August 1955)

In 1985, Elgamal published the paper QA Public key
Cryptosystem and a Signature Scheme based on
discrete LogarithmsO which contains the basis of:

1) ElGamal Encryption Scheme

Before explaining this PKE scheme, we need to
recall a couple of concepts of Group Theory

2) the DSS (Digital Signature Standard)
adopted by NIST

- more details on this in lec10-11 -

11 />g
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Recap on group theory (def. of group)

DEFINITION

A group G is a set together with an operation ! ' satisfying the following

properties:

1.CLOSURE: ! g,h! Githoldsthatg! h! G

G it holds that (g! h)' 'k =g! (h! k)

2. ASSOCIATIVITY. ! g, h, k!

3. IDENTITY. there existsane! Gst.el 'g=g! e=g,! g! G

4.INVERSE ! g! Gthereexistsah! Gs.t.hl 'g=e=gl h

EXAMPLES OF GROUPS (Zy,+), (Zy,9

LOOITHOD

l28
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Recap on group theory (generators & orders)

DEFINITION

The order of anelementg! G (multiplicative group) is the

smallest positive integer n such that: g" = 1 in G. We adopt two
eqguivalent notations for the order of group/element: ord(G) = |G]| .

Lagrange
theorem

A FACTS ON THE ORDER OF AN ELEMENT in additive notation

otherwise, /' Foranyg! Githoldsthat: g°d(®) =1 |Glg =0
if ord(g) |ord(G) but

ord(g) < ord(G) ord(g) divides ord (G) <t------
g generatesa
subgroup of G

If|g|=|G]|thengis called generator of G and
<g>={1=¢",g=g%, 0%, E, ¢gl®l}=G

DEFINITION

A group G that has a generator G is called cyclic .

NOTE: not every group has a generator (i.e., not every group is cyclic),
if a group is cyclic, it usually has more than one generator (at least g and g

13 /»g
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Factson Zy and Zy

How many generators does (Zn , +) have? | (N ) _ number of all the positive integers

T:-ﬂ I_I smaller than N and coprime with N
r [

if g is comprimeto N, then g is invertible in Zy (BZzout identity / EEA)
= = S L . gt+Ns=1
FACT: in an additive group, to be invertible means to be a generator of the group
= WHY? Consider <g> = { 0g =0, 1g, 2g,39,E , N g = 0}
" if there was another 0 between 0g and Ng, his aroun has
then there exists a k!" {1,2,.., N-1 } such that N | kg, exa?:tly ?(N)
mm | since GCD(N,g)=1 it means that N | k, which is absurd (k<N) elements

all the invertible elements of form the multiplicative group (Zn 3

\/

EULER THEOREM
All the invertible elements of (£N ’3, i.e.,anyh! Zns.t. GCD(h,N) =1,

satisfy h! (N) — 1 mod N

14 [5g
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The Zy, group

: WHY? Home mental exercise:
: ? : . .
How many generators does ZI\_have' get inspiration from the previous

D : : l | ( ) slide and apply the reasoning to
If Z iscyclic ,thenithas . . N generators . _ exponent

you ca prd

EXAMPLES I B . ' s (Y\Oﬂ

Z1,={1,57,11} isnotcyclic (because 12 is not of the form 2p? ‘\\\N eyclic in e
m— : ) .
| — 1 (92\] — 52 1(9 | - _\_Nlthandd prime) L. e Y .
1(12)= 1291 (3)=27 (2! DEB! 1)=4-"g~ —g — s
<5>={1,5,25=1mod 12, E}

<7>={1,7,49=1mod 12, E}
|
Zio = {1,3,7,9 is cyclic because 10 = 2*5 (is of the form 2p?, with p a odd prime)
1(10)= 12! )= ! DE!' D=4 1] g "l =
<3>={1=3Y3,9=-1mod 10, || can already conclude that ord(3)=4, why?
33=323=(-1)3=7mod 10, 3* =32 3% = (-1)(-1) = 1 mod 10, 3 E}

<1>={1,1, 1E}
<11>={1,11=-1mod 12, 1,E}

15 /g
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ElGamal encryption system ¢ <

R

(useful at the exercise sessions / exam

ElGamal

KeyGen( ! )! (pk, sk) :

1. generate a description of a cyclic group G =< g > of order g (which is
a ! -bits long integer)

2. choose a random value x! {1, 2, E, g-1}, and compute h=g*in G

3.set: pk =(G,qg,q, h)andsk =(x).

the value k= cf =h'

is used as a shared

secret key -DH in lec0s -

Enc(pk, m)! c (function from G to G)

[

1. pickarandom r! {1, 2, E, g-1} and compute c, =g

2. compute c,= m*h" | G, the ciphertextis ¢ = (cy,Cy)

Dec(sk, c)! m (function from G to G)
1. compute k = ¢ 2. decrypt m=c, k' =c, c;*

16 /og
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ElGamal encryption scheme: correctness

Do ciphertext decrypt correctly?

CORRECTNESS EQUATION: Dec( sk, Enc (pk, m))=m

Letc=(c,,C,)be the EIGamal encryption of m
[01 = gr] [czzm*hr] h = g*

Then, Dec(sk, ¢c)! ¢, k1l m= c, C-lx
=(mh") (g")”
:(m(gX)r)(gr)-x

=m g<gX

= m

17 /g



ElGamal Encryption: numerical example

Let g =11, consider G =

Z,=1{1,2,...,10

sk = x 1R Z,
sk =3

h=23=8 (mod 11)

pk =(G,9,q.h
h=(g"

S (24,211, 8)]

lecO7 PKE (ElGamal,Protocols)

and g = 2.

check that 2 is a generator of Z},

22 4 modi11i! 1
25 32 33-1! 1mod11

by Lagrange Theorem, 2 has order 10,

//:jLet m = 10 1

%

r=6

t

Encr

= (D3P’ =9y =

c, =2°%=9 (mod 11)
c,=10* g% (mod 11)

fCZ(Cl, Cz)§
c=(9,8)
r 1R Z,
ct=4¢
Cc=m!h'
-(-2)® = 8 (mod 11)

and therefore 2 is a generator of G

e
c=(9,8) | .
k=9%=(-20°=-8 k=¢c 5
= 3 (mod 11) S
m :8*(3)'1 EEA m = Czk! 1I"*
=8*4=32=-1=10 (mod 11)

JRKF662 MRt ..
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Overview of what we did on PKE

SECURITY NOTIONS
ENCRYPTION SCHEMES

Textbook RSA
ElGamal

IND-CPA
IND-CCA

The Discrete Logarithm Problem
Integer Factorisation Problem

meet at

e --- ciphertext key

public key '——l> ENCRYPTION =¥

Cx8,0 ?
(which depends on a$tg§/|il.
h a
"® OTHER CONNECTED TOPICS RELATED THEORETICAL TOPICS
Public Key Infrastructures Prime Numbers :
Key Management Extended Euclidean Algorithm
(Certibcation Authorities) A MESSAYCY cler Theorem

Primality Tests oonding sed Group Theory 19/
| ! 9 /28
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CRT ... again!

.f)

W

(useful at the exercise sessions / exam

Useful to speed up RSA computationsEhow?

FACT

The Chinese Remainder Theorem is extremely useful fapdular exponentiation :

s mod (p! 1) S mod (q' 1)

(x> mod N)crr = (X7 modp, x> modq) = ( X; mod p, X,

p'l—l)

from these values (mod p and mod Q)
you can go back to the OtrueO value
mod N using CRT and EEA!

CRT and running time

Modular exponentiation isO(K ®), where K is the size in bits of the numbers involved.

So, if p and q are of the same size, each of the exponentiations to the rigist 2* times
faster than the original one, for a total & ciency gain of a fator 4.

SPOILER: CRT will come back in lec10 in a Secret Sharing Scheme 20 /g
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Home assignment 2 (announcment)

Home assignment 2, Cryptography course

0. Introduction

In this assignment you will work with the EIGamal encryption system. To gain an un-
derstanding of this system and the algorithms for modular exponentiation and extended
gcd, you will do various computations by hand. Of course, this implies that we will need
to work with very small numbers. In fact, the setting of the assignment, common for
all of you, is Z55;. The assignment has three parts.

You must upload at least ONE solution to Home Assignment 2
BEFORE next Friday ( 25/11/2016) at 16.00

0 =
( unless you have already passed it) ~__*
Try to have Assignment 1 accepted as soon as possible 21 /g
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Protocol: definition

Encryption, hash functions, MACs and signatures are cryptographic primitives

Cryptographic primitives do not directly provide useful services, such as:
identibcation (see lec08), entity authentication (see lec11?), key agreement,
digital cash, e-voting (see lec09), share common secrets (see lecO9E

to obtain these features we must use cryptographic protocols (which
often make use of the cryptographic primitives), e.g., TLS (Transport
Layer Security) for secure web connections (HTTPS).

DEFEINITION:

A cryptographic protocol is a distributed algorithm describing
precisely the interactions between two or more entities, and
achieving certain security objectives

22 [>g
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Protocols: conventional notations

For describing protocols we use this notation:

A ,B : names of parties involved in the protocol
S : Trusted Third Party (TTP), e.g. a Key Distribution Center (KDC)

C(A) : C pretending to be A
N, : nonce (short for number used once) generated by party A
T, : timestamp generated by A
K,g - Shared (symmetric) key for communication between A and B

{m }kAB . the message m is encrypted using the key k 5

m, [| m, : m; concatenated with m, (i.e. m, is appended to m,)

23 [g
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What are key-exchange protocols useful for ?

Goal : enabling two (or more) parties to establish a common secret key,
In a secure way

Bob

In principle, the only remaining problem is how to ensure that a public

key actually belongs to its supposed owner (prevent identity spoobng)
- see lec10-11 for details about authention - 24 [»g
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A simple key exchange protocol

Alice

Q). Key Distribution
W U8l Center (KDC)

C = {shared_key ||{shared key } }y,

Decrypt C, retrieve shared_key Bob
and { shared key }kBS

l Hi Bob, this is Alice, letOs talk using this secret key

{ shared_key }kBS || { message }shared_key

=l r-alr

1. S knows all the session keys

2. the protocol is insecure against replay attacks

3. Bob is not sure heOgalking to Alice

4. Alice is not sure she is talking to Bob

5. An eavesdropper Attacker can learn the shared_key
6. Bob can impersonate Alice

1= ] =T 25 /28

K
1.A>S:A B3

CS>A;
2.S>A:{ Kk { k}kBS }kAS
3.A->B:{k} Kee | {message}k

There are some problemsE
which ones?
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Needham-Schroeder protocol (1978) is a forerunner of Kerberos

Tok,)

\——

NEEDHAM-SCHROEDER PROTOCOL

S=server/ KDC/TTP
Nonce = number used once
MAC = Message Authentication Code

1.A->S:[A,B,N,]
2.S->A:{ Ny B kug . {Kng I A}
3.A>B:{keg Aby
4.B->A1{Ng},

5.A->B: {Ng-1}) _

BS }kAS

Are A and B sure that they are talking to each other?

Known-key attack

If C gets an old session key k 5 , then C can reuse the
old key kg In message 3. and 5. to impersonate A !

WhatOs the problem?
message 3. is not protected by nonces to ensure that K ,g is a fresh generated key

A solution : add a fresh authenticator in message 2. which depends on
the nonce N, (which Is supposed to be di! erent every time)

20TTP ->AZ{ Enc (kAS,kAB)’ MAC (kAs1[B, N, , ENC (kAsakAB)]) ,

Enc (kgs , kag )s MAC (kgs , [ A/ Na , Enc (Kgg , Kng ) ] )}26/
28
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Interested in Crypto: why not doing your thesis with us?

Fully Homomorphic Encryption
(implementations and / or theoretical research)

Extend existing cryptographic primitives to work in a multi-key setting

(implementations and / or theoretical research on how to make OoldO systems
work in a collaborative multi-user setting, to perform operation on ciphertext /
data signed by di! erent users)

Light-weight veribcation of outsourced computation to third parties
(how to make heavy computations Od ordableO for resource constrained device)

Challenge yourself : try to speed up the computation of a bilinear
(build up some knowledge in ECC -Elliptic Curve Cryptography-) pairing

27 [g
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