
lec07 PKE (ElGamal,Protocols)

2 28

Roadmap on Public Key Encryption

/

Lecture 06:

Introduction to Number Theory

Lecture 07:
Recap on RSA
Factoring and Dlog problems
Recap on Group Theory
ElGamal encryption scheme
Recap on PKE
Key exchange protocols (Needham-Schroeder)

Lecture 08:

Key exchange protocols (DifÞe-Hellman)
IdentiÞcation protocol (Fiat-Shamir)
Quick look at Zero-Knowledge (ZK) and Sigma (Σ) protocols
Recap : security notions / number theory
Old exams

lec07 PKE (ElGamal,Protocols)

3 28

Recap: Textbook RSA encryption scheme

/

(useful at the exercise sessions / exam)
Textbook RSA

 KeyGen(��) → (pk, sk) :
1. generate two distinct ��-bit primes p and q, compute N=pq and ''(N).

Enc(pk, m) = c = me
mod N

m = cd mod NDec(sk, c) =

- check lec06 for details -
Euler’s phi (or totient) function

2. choose an integer e !R ZNe !R ZN such that GCD(e , N) =1 and
compute its (modular) inverse d = e! 1

mod ! (N)d = e! 1
mod ! (N)

3. set: pk = (N, e) and sk = (N, d).

Enc(pk, #) : Z⇤
N �! Z⇤

NZ⇤
N �! Z⇤

N

Dec(sk, #) : Z!
N !" Z!

NZ!
N !" Z!

N

lec07 PKE (ElGamal,Protocols)

4 28

Textbook RSA: correctness

/

Do ciphertexts decrypt correctly?

CORRECTNESS EQUATION : Dec(sk, Enc (pk, m)) = m

 Let c = Enc (pk, m) = me mod N

 Then, Dec(sk, c) = cd mod N ! (me)d mod N

! med mod N
but ed = 1 mod ''(N)

by Euler Theorem

a!! (n) ! 1 mod N

that is: a!! (n)+1 ! a mod N ! m mod N

lec07 PKE (ElGamal,Protocols)

5 28

'security' of the RSA public key

/

BOB

BOB

pk skeasy to compute

hard to compute

Where does the computational
hardness come from?

it is easy to compute e-1 if one knows p,q,
(or even ''(N)); but not if one only knows N=pq

Textbook RSA

The factoring problem

Gauss (1805):

“The problem of distinguishing prime numbers from composite numbers and of resolving
the latter into their prime factors is known to be one of the most important and useful in
arithmetic.”

Best known algorithm (NFS) Number Field Sieve

Run time exp(Õ(3
!
n)) for n-bit integer.

Current world record: RSA-768 bits (232 digits)

Work: two years on hundreds of machines

Factoring a 1024-bit integer: about 1000 times harder
" likely possible this decade " Better to use 2048 bits integers

November 24, 2015 37 / 38

the Number Field Sieve
(NFS) Algorithm

for integer factorisation

lec07 PKE (ElGamal,Protocols)

6 28

Flashback: how to define security of a PKE scheme?

/

Principles of Modern Cryptography

if you don’t understand what you want to
achieve how can you possibly know when

(or if) you have achieved it?

1. Formal Definitions

2. Precise Assumptions

3. Proof of Security- seen in lec02 -

1. Formal Definitions
- seen in lec05 -

2. Precise Assumptions

in the next slides we look to two
classical hardness assumptions

lec07 PKE (ElGamal,Protocols)

7 28

Number-theoretic problems that are conjectured to be 'hard' 1

/

Modern cryptography is (almost) always based on the assumption that a certain problem
cannot be solved e! ciently, i.e., in polynomial time (computationally hard problem).

The Factoring Problem

Given a composite integer N, the factoring problem is
to Þnd its decomposition in prime factions.

used in RSA

(e.g. for RSA, this means to Þnd p, q such that pq = N)

When the number N is very large, no polynomial-time (non-quantum) algorithm
for integer factorization is known. The best known algorithm to factor composite
numbers is the the Number Field Sieve (NFS) - see previous slide for details -

Other algorithms: Wheel factorization, Pollard's rho, Lenstra (elliptic curve factorization), Fermat's
factorization method

For quantum computer s, Shor (1994) discovered an algorithm to factorise
composite in polynomial time. In 2001, the Þrst seven-qubit quantum computer
ran Shor's algorithm and could factorise 15 = 5 * 3.

lec07 PKE (ElGamal,Protocols)

8 28

Number-theoretic problems that are conjectured to be 'hard' 2

/

Given a cyclic group G, with generator g, (G = < g >) and a
random element h ! G, compute log g(h), i.e., the x ! {0,1,É

The Discrete Logarithm (Dlog) Problem

Modern cryptography is (almost) always based on the assumption that a certain problem
cannot be solved e! ciently, i.e., in polynomial time (computationally hard problem).

ord(G) } such that gx = h. used in: RSA,
ElGamal, DH-

key exchange,
Digital signatures,

elliptic curves

Known algorithms to Þnd the Dlog: Baby-step giant-step ,
PohligÐHellman algorithm, Pollard's rho for logarithms

A cyclic group, is of the form G = { g0, g1, É , g|G| }, and g is called the generator
of G. Thus, for every element h ! G, there exists a unique x ! Z|G|Z|G| such that h = gx ,
x is called the discrete logarithm of h with respect to g.

lec07 PKE (ElGamal,Protocols)

9 28

Textbook RSA: security

/

Is the textbook RSA encryption secure ? c = me mod N

An Attacker would have to compute m from me = c mod N

this is

equivalent to

solving the Dlog

problem

An Attacker would have to compute the decryption (secret) key d from e

this is

equivalent to Þnding

a factorisation of

N = pqCan an Attacker recover m is some other way?

YES because textbook RSA encryption is deterministic

so, for a Þx (pk, sk) pair, a message m, always encrypts to the

same ciphertext me and the attacker can easily replay messages
or check if a message has already been sentÉ

this means that textbook RSA is not semantically secure

lec07 PKE (ElGamal,Protocols)

10 28

RSA is not semantically secure (under IND-CPA)

/

Exercise: prove that the textbook-RSA encryption scheme is not secure under IND-CPA

(useful at the exercise sessions / exam)

Solution: (explain how the textbook-RSA and IND-CPA work). lec05 Primality test RSA & PKE security

23 28

Security notion: IND-CPA (Chosen Plaintext Attack)

/

Attacker

Challenger
A

C

KeyGen (!) ! (pk, sk)
pk

AA can perform polynomially-many
encryptions of messages of his choice

m0, m1 !D M
len(m0) = len(m1)

m0, m1 b !R { 0, 1}

c ! Enc (pk, mb)c
(PPT) Algorithm

b! ! { 0, 1}output
a guess for b

DEFINITION

An asymmetric cipher (KeyGen, Enc, Dec) is
secure under IND-CPA if for any PPT adversary,
it holds that:

P(b = b!) <
1
2

+ negligible

choose two messages
m0 ! m1 , with len(m0)=len(m1)

compute c0 = Enc(pk, m0)

and c1 = Enc(pk, m1)

send m0 , m1 to

the Challenger

get the challenge
ciphertext c and check:

RZAP947

 bÕ = 0,
otherwise output bÕ = 1.
 if c = c0 output

Let Wb be the even that chose b ! {0,1}, and outputs bÕ=0

Then:

C A
P(wins the game) = | P(W0) - P(W1) |A = | 1 - 0 | = 1.

lec07 PKE (ElGamal,Protocols)

11 28

Is there an 'easy' PKE system that is randomised?

/

Taher Elgamal (!"#$ %&'()) (born 18 August 1955)

In 1985, Elgamal published the paper ÒA Public key
Cryptosystem and a Signature Scheme based on
discrete LogarithmsÓ which contains the basis of:

1) ElGamal Encryption Scheme

2) the DSS (Digital Signature Standard)
adopted by NIST
- more details on this in lec10-11 -

Before explaining this PKE scheme, we need to
recall a couple of concepts of Group Theory

lec07 PKE (ElGamal,Protocols)

12 28

Recap on group theory (def. of group)

/

DEFINITION

A group G is a set together with an operation ! satisfying the following
properties:

1. CLOSURE: ! g, h ! G it holds that g ! h ! G

2. ASSOCIATIVITY: ! g, h, k ! G it holds that (g! h)! k = g! (h! k)

3. IDENTITY: there exists an e ! G s.t. e! g = g! e = g, ! g ! G

4. INVERSE: ! g ! G there exists a h ! G s.t. h! g = e = g! h

EXAMPLES OF GROUPS (ZN , +) , (Z!
N , á)

lec07 PKE (ElGamal,Protocols)

13 28

Recap on group theory (generators & orders)

/

The order of an element g ! G (multiplicative group) is the

smallest positive integer n such that: gn = 1 in G. We adopt two
equivalent notations for the order of group/element: ord(G) = |G| .

DEFINITION

FACTS ON THE ORDER OF AN ELEMENT

For any g ! G it holds that: gord (G) = 1
in additive notation

| G | g = 0

ord(g) divides ord (G)

Lagrange
theorem

If | g | = | G | then g is called generator of G and

<g> = { 1=g0 , g=g1, g2 , É , g| G | } = G

otherwise,
if ord(g) | ord (G) but

ord(g) < ord (G)
g generates a

subgroup of G

A group G that has a generator G is called cyclic .

DEFINITION

NOTE: not every group has a generator (i.e., not every group is cyclic),
if a group is cyclic, it usually has more than one generator (at least g and g-1)

lec07 PKE (ElGamal,Protocols)

14 28

Facts on and

/

ZN Z!
N

How many generators does (ZN , +)(ZN , +) have? JXVC399! (N) = number of all the positive integers
smaller than N and coprime with N

if g is comprime to N, then g is invertible in ZN (BŽzout identity / EEA)
g t + N s =1

FACT: in an additive group, to be invertible means to be a generator of the group
WHY? Consider <g> = { 0g =0 , 1g, 2g,3g,É , N g = 0}

if there was another 0 between 0g and Ng,
then there exists a k !" { 1,2,.., N-1 } such that N | kg,
since GCD(N,g)=1 it means that N | k, which is absurd (k<N)

all the invertible elements of form the multiplicative group (Z
!
N , á)(Z!
N , á)

this group has
exactly !! (N)

elements
thus it has order

 !! (N)

EULER THEOREM

All the invertible elements of (ZN , á)(ZN , á), i.e., any h ! ZNZN s.t. GCD(h, N) =1,
satisfy h! (N) = 1 mod N

lec07 PKE (ElGamal,Protocols)

15 28

The group

/

Z!
N

How many generators does have?Z!
N

!
!
! (N)

"
If is cyclic , then it has generatorsZ!

N

WHY? Home mental exercise:
get inspiration from the previous
slide and apply the reasoning to
the exponent

EXAMPLES

Z!
12

Z!
10

! (10) =

! (12) =

you can Þnd

examples in

which Z
!
NZ!
N is (not)

cyclic in the

exercises

WYCV463

= { 1, 5, 7, 11}

! (22)! (3) = 2 2! 1(2 ! 1)(3 ! 1) = 4

is not cyclic (because 12 is not of the form 2pa

with p a odd prime)

= { 1, 3, 7, 9}

! (2)! (5) = (2 ! 1)(4 ! 1) = 4
is cyclic because 10 = 2*5 (is of the form 2pa , with p a odd prime)

<1> = { 1, 1, 1É}
<11> = { 1, 11 = -1 mod 12 , 1,É}

<5> = { 1, 5, 25 = 1 mod 12 , É}

<7> = { 1, 7, 49 = 1 mod 12 , É}

<3> = { 1=30, 3, 9 = -1 mod 10 , I can already conclude that ord(3)=4, why?

33 = 32 3 = (-1)3 = 7 mod 10 , 34 = 32 32 = (-1)(-1) = 1 mod 10, 3 É}

lec07 PKE (ElGamal,Protocols)

16 28

ElGamal encryption system

/

(useful at the exercise sessions / exam)

ElGamal

 KeyGen(!!) ! (pk, sk) :

1. generate a description of a cyclic group G = < g > of order q (which is
a !! -bits long integer)

2. choose a random value x ! {1, 2, É, q-1}, and compute h = gx in G

3. set: pk = (G, g, q, h) and sk = (x).

Enc(pk, m) ! c (function from G to G)

1. pick a random r ! {1, 2, É, q-1} and compute c1 = gr

2. compute c2= m*hr ! G, the ciphertext is c = (c1, c2)

Dec(sk, c) ! m (function from G to G)
1. compute k = c1 x 2. decrypt m = c2 k-1 = c2 c1

-x

the value k = c1 = hr

is used as a shared
secret key -DH in lec08 -

x

lec07 PKE (ElGamal,Protocols)

17 28

ElGamal encryption scheme: correctness

/

Do ciphertext decrypt correctly?

CORRECTNESS EQUATION : Dec(sk, Enc (pk, m)) = m

c1 = gr c2=m*hr h = gx

 Let c = (c1 , c2) be the ElGamal encryption of m

 Then, Dec(sk, c) ! c2 k-1 m = c2 c1
-x

= (m hr) (gr)-x

= (m (gx)r) (gr)-x

= m gxr g-xr

= m

lec07 PKE (ElGamal,Protocols)

18 28

ElGamal Encryption: numerical example

/

 Let q = 11 , consider G = and g = 2.Z!
q = { 1, 2, . . . , 10}

check that 2 is a generator of Z!
11

22 �� 4 mod 11 ! 1
25 �� 32 �� 33 -1 ! 1 mod 11

by Lagrange Theorem, 2 has order 10,
and therefore 2 is a generator of G

sk = x ! R Z!
q

h = gx
pk = (G, g, q, h)

K
ey

G
en

(2, 11,)Z!
11

sk = 3

h = 23 = 8 (mod 11)

8

E
nc

ry
pt

Let m = 10 c = (c1, c2)

c1 = gr

c2 = m ! hr

r ! R Z!
qr = 6

c1 = 26 = 9 (mod 11)

c2= 10 * 86 (mod 11)

JRKF662

= (-1)*((-3)2)3 = -(9)3 =-(-2)3 = 8 (mod 11)

c = (9, 8)

D
ecrypt

c = (9, 8)

m = c2k! 1

k = cx
1k = 93 = (-2)3 = -8

= 3 (mod 11)

m = 8*(3)-1 EEA

= 8* 4 = 32 = -1 = 10 (mod 11)

lec07 PKE (ElGamal,Protocols)

19 28

Overview of what we did on PKE

/

anyone can encrypt a message (for Bob) using BobÕs public keyintuition:
only Bob, knowing the corresponding secret key , can decrypt correctly

Alice
Bob

secret
key

LetÕs
meet at
10am.

plaintext

ENCRYPTION DECRYPTION

LetÕs
meet at
10am.

ciphertext

Cx8, 0_?
a tgy1
$aBk

plaintext

public key
(which depends on
the secret key)

BOB

ENCRYPTION SCHEMES

Textbook RSA

ElGamal

SECURITY NOTIONS

IND-CPA
IND-CCA
The Discrete Logarithm Problem
Integer Factorisation Problem

RELATED THEORETICAL TOPICS

Prime Numbers
Extended Euclidean Algorithm
Euler Theorem
Group Theory

OTHER CONNECTED TOPICS

Public Key Infrastructures
Key Management
(CertiÞcation Authorities)
Primality Tests

lec07 PKE (ElGamal,Protocols)

20 28

CRT ... again!

/

Useful to speed up RSA computationsÉhow?

(useful at the exercise sessions / exam)

The Chinese Reminder Theorem

RSA and CRT

FACT
The Chinese Remainder Theorem is extremely useful formodular exponentiation :

(xs mod N)CRT = (xs
1 mod p, xs

2 mod q) = (xs mod (p! 1)
1 mod p, xs mod (q! 1)

2 mod q).

We reduce the size of both thebasis and of the exponent (FermatÕs Little Theorem
xp! 1 = 1)

CRT and running time

Modular exponentiation isO(K 3), where K is the size in bits of the numbers involved.

So, if p and q are of the same size, each of the exponentiations to the rightis 23 times
faster than the original one, for a total e! ciency gain of a factor 4.

November 30, 2015 23 / 34

from these values (mod p and mod q)
you can go back to the ÔtrueÕ value

mod N using CRT and EEA!

The Chinese Reminder Theorem

RSA and CRT

FACT
The Chinese Remainder Theorem is extremely useful formodular exponentiation :

(xs mod N)CRT = (xs
1 mod p, xs

2 mod q) = (xs mod (p! 1)
1 mod p, xs mod (q! 1)

2 mod q).

We reduce the size of both thebasis and of the exponent (FermatÕs Little Theorem
xp! 1 = 1)

CRT and running time

Modular exponentiation isO(K 3), where K is the size in bits of the numbers involved.

So, if p and q are of the same size, each of the exponentiations to the rightis 23 times
faster than the original one, for a total e! ciency gain of a factor 4.

November 30, 2015 23 / 34

SPOILER: CRT will come back in lec10 in a Secret Sharing Scheme

lec07 PKE (ElGamal,Protocols)

21 28

Home assignment 2 (announcment)

/

(unless you have already passed it)
Try to have Assignment 1 accepted as soon as possible

CHALMERS UNIVERSITY OF TECHNOLOGY
Dept of Computing Sciences

Home assignment 2, Cryptography course

0. Introduction

In this assignment you will work with the ElGamal encryption system. To gain an un-
derstanding of this system and the algorithms for modular exponentiation and extended
gcd, you will do various computations by hand. Of course, this implies that we will need
to work with very small numbers. In fact, the setting of the assignment, common for
all of you, is Z!

23. The assignment has three parts.

1. In the Þrst part, you will investigate your given generator and show that it is
in fact not a generator of the whole groupZ!

23, but rather a certain subgroup.
This contradicts our lecture description of ElGamal encryption; however, it turns
out that in practice one often uses such subgroups. The (minor) di! erences with
working in a subgroup will be explained below; the advantages will be discussed
in a lecture week 4.

2. In the second part, you will act as a sender and encrypt a message for a receiver
whose public key is known.

3. In the third part, you will act as receiver and your task is to decrypt a given
message.

The generator g, the keys and the messages will again be computed from your per-
sonnummer, so the assignments di! er. Since we work in such a small set, we cannot
have di! erent generators for all of you; that would require more than 100 generators.
Similarly, keys and messages cannot be all di! erent, but we expect that there will not
be two assignments that are identical in all respects. Before you start your work on the
assignment, you need to generate your assignment data. This is done by giving your
personnummer as command line argument to a program on our Linux machines. All
you need to do is to log in to one of these, open a terminal window and do as follows
(where $ is the shell prompt):

$ ~sydow/cryptoAss2 1234567890
Home assignment 2, cryptography.
Data for 1234567890.
Your generator is g=12.
For task 2, the receiverÕs public key is X=16 and the message is m=12.
For task 3, your private key is x=10 and the ciphertext is (2,17)(18,22)(16,21).

Here, you replace 1234567890 with your civic registration number (personnummer). If
you are a foreign student and do not yet have a personnummer, you may construct one
on the form YYMMDDXXXX, where YYMMDD is your birth date and XXXX are any
four digits. Of course, you must include your personnummer in the solution, so that we
can check your solution.

1

You must upload at least ONE solution to Home Assignment 2
BEFORE next Friday (25/11/2016) at 16.00

lec07 PKE (ElGamal,Protocols)

22 28

Protocol: definition

/

Encryption, hash functions, MACs and signatures are cryptographic primitives .

Cryptographic primitives do not directly provide useful services, such as:
identiÞcation (see lec08), entity authentication (see lec11?), key agreement,
digital cash, e-voting (see lec09), share common secrets (see lec09)É
to obtain these features we must use cryptographic protocols (which
often make use of the cryptographic primitives), e.g., TLS (Transport
Layer Security) for secure web connections (HTTPS).

DEFINITION:

A cryptographic protocol is a distributed algorithm describing
precisely the interactions between two or more entities, and
achieving certain security objectives

lec07 PKE (ElGamal,Protocols)

23 28

Protocols: conventional notations

/

A ,B : names of parties involved in the protocol

S : Trusted Third Party (TTP), e.g. a Key Distribution Center (KDC)

NA : nonce (short for number used once) generated by party A

kAB : shared (symmetric) key for communication between A and B

C(A) : C pretending to be A

TA : timestamp generated by A

{ m }kAB
 : the message m is encrypted using the key k AB

m1 || m2 : m1 concatenated with m 2 (i.e. m2 is appended to m 1)

For describing protocols we use this notation:

lec07 PKE (ElGamal,Protocols)

24 28

What are key-exchange protocols useful for ?

/

enabling two (or more) parties to establish a common secret key,
in a secure way

Goal :

Alice Bob

SK

`

Eve ??

- see lec10-11 for details about authention -

In principle, the only remaining problem is how to ensure that a public
key actually belongs to its supposed owner (prevent identity spooÞng)

lec07 PKE (ElGamal,Protocols)

25 28

A simple key exchange protocol

/

Alice

kAS

Bob

kBS

kAS, kBS

Key Distribution
Center (KDC)I want to get a secret shared key with Bob

 C = { shared_key || { shared_key }kBS
 }kAS

Decrypt C, retrieve shared_key
and { shared_key }kBS

Hi Bob, this is Alice, letÕs talk using this secret key

{ shared_key }kBS
 || { message }shared_key

1. A -> S : A

2. S -> A : { k, { k }kBS
 }kAS

3. A -> B : { k } kBS
|| {message}k

There are some problemsÉ
which ones?

WMEH737

1. S knows all the session keys
2. the protocol is insecure against replay attacks
3. Bob is not sure heÕs talking to Alice
4. Alice is not sure she is talking to Bob
5. An eavesdropper Attacker can learn the shared_key
6. Bob can impersonate Alice

lec07 PKE (ElGamal,Protocols)

26 28

Needham-Schroeder protocol

/

(1978) is a forerunner of Kerberos

1. A -> S : [A , B, NA]

2. S -> A : { NA , B, kAB , { kAB || A }kBS
 }kAS

3. A -> B : { kAB , A } kBS
4. B -> A : { NB } kAB

5. A -> B : { NB -1 }kAB

NEEDHAM-SCHROEDER PROTOCOL

Are A and B sure that they are talking to each other?

If C gets an old session key kAB , then C can reuse the

old key kAB in message 3. and 5. to impersonate A !

Known-key attack

WhatÕs the problem?
message 3. is not protected by nonces to ensure that K AB is a fresh generated key

A solution : add a fresh authenticator in message 2. which depends on
the nonce NA (which is supposed to be di ! erent every time)

Enc (kBS , kAB), MAC (kBS , [A, NA , Enc (kBS , kAB)]) }
2Õ. TTP -> A : { Enc (kAS , kAB), MAC (kAS , [B, NA , Enc (kAS , kAB)]) ,

S = server / KDC / TTP
Nonce = number used once

MAC = Message Authentication Code

lec07 PKE (ElGamal,Protocols)

27 28

Interested in Crypto: why not doing your thesis with us?

/

Fully Homomorphic Encryption

Extend existing cryptographic primitives to work in a multi-key setting

Light-weight veriÞcation of outsourced computation to third parties

Challenge yourself : try to speed up the computation of a bilinear
pairing

(implementations and / or theoretical research)

(implementations and / or theoretical research on how to make ÒoldÓ systems
work in a collaborative multi-user setting, to perform operation on ciphertext /
data signed by di ! erent users)

(how to make heavy computations Ôa! ordableÕ for resource constrained device)

(build up some knowledge in ECC -Elliptic Curve Cryptography-)

lec07 PKE (ElGamal,Protocols)

28 28

References

/

Chapters: 8.5, 10.2 Chapters: 8.3.1,8.3.2, 9.0,11.4.1

Optional / recommended readings: A Computational Introduction to
Number Theory and Algebra V. Shoup, 2008 (V1), Chapter 1-4, 11, 12
Available at http://shoup.net/ntb/ntb-v2.pdf

