
Solutions for week 5, Cryptography Course - TDA 352/DIT 250

In this weekly exercise sheet: you will construct some secret sharing schemes, study hash functions
and identification protocols.
Completing the ex. sheet: you will have a good understanding of hash function’s theory, know how to
build some secret sharing scheme and have some knowledge on identification protocols.

Easy

1. To prove that g = 6 is a generator of Z∗41 we start by observing that 41 is prime and so Z∗41 is a cyclic
group of order φ(41) = 41− 1 = 40.
By definition g is a generator if and only if gi 6= 1 (mod 41) for every i ∈ {1, . . . , φ(41)− 1}.
The negation of this statements tells us that if there exists an exponent i ∈ {1, · · · , φ(41) − 1} such
that gi = 1 (mod 41) then g is not a generator of Z∗41. In this case, g will generate a subgroup 〈g〉 of
Z∗41 and ord(〈g〉)|φ(41) = 40 (by Lagrange theorem).
Therefore, we only need to check if there exists a divisor d of φ(41) such that gd = 1 (mod 41).
The divisors of 40 are {1, 2, 4, 5, 8, 10, 20} and so we compute

61 = 6 6= 1 (mod 41) 62 = 36 6= 1 (mod 41) 64 = 25 6= 1 (mod 41)

65 = 27 6= 1 (mod 41) 68 = 10 6= 1 (mod 41) 610 = 32 6= 1 (mod 41) 620 = 40 6= 1 (mod 41)

The above computations show that g = 6 is a generator of Z∗41.

2. Definition: A secret-sharing scheme usually involves

• a dealer D who has a secret s

• n parties P1, . . . , Pn

A secret-sharing scheme is a method by which the dealer distributes shares of s to the n parties such
a way that:

• any subset of t+ 1 parties can reconstruct the secret from its shares and

• any subset of t parties cannot retrieve any partial information on the secret s

3. • (t+ 1)-correctness: any t+ 1 parties together can compute the secret s.

• privacy: no single party alone learns knows anything about the secret s.

• t-unconditional security: any subset of t parties cannot recover the secret s, no matter how
much computational power the parties have.

4. • Completeness: An (interactive) identification protocol is complete if an honest prover P
succeeds in convincing a honest verifier V that a true statement is true.

• Soundness: An (interactive) identification protocol is sound if no dishonest prover P succeeds
in convincing a honest verifier V that a false statement is true.

5. A Σ-protocol is a protocol that has the following three-move structure:

(a) the prover P generates a random looking value called commitment (a witness of P ’s statement)
and sends it to the verifier V

(b) V replies with a random challenge to P

(c) P performs some computations based on the challenge, the chosen (committed) witness and the
secret (connected to the statement). The result is the response to V .

1

Medium

6. Let us consider the Mignotte’s SSS with n = 4 and t = 1. Let m1 = 3, m2 = 4, m3 = 5, m4 = 7. Let
the secret be s = 9.

(a) We have that gcd(mi,mj) = 1 for every choice of i, j with i 6= j. We have that m1 < m2 < m3 <
m4.
We check that m1 ·m2 = 3 · 4 = 12 > 7 = m4. So the given number are a valid Mignotte’s series.

(b) Let the secret be s = 9. The share si is computed as si = s (mod mi):

s1 = 9 = 0 (mod 3) s2 = 9 = 1 (mod 4)

s3 = 9 = 4 (mod 5) s4 = 9 = 2 (mod 7)

(c) We start from s1 = 0 (mod 3) and s4 = 2 (mod 7).
In order to reconstruct s, we need the Bezout’s identity 7 · (1) + 3 · (−2) = 1. From the CRT we
get

s = 0 · (7 · 1) + 2 · (3 · (−2)) = −12 (mod 21) = 9 (mod 21)

(d) We start from s1 = 0 (mod 3), s3 = 4 (mod 5) and s4 = 2 (mod 7).
We have, by the previous question, that s1,4 = 9 (mod 21). We now consider the linear system
of congruences: {

s1,4 = 9 (mod 21)

s3 = 4 (mod 5)

Bezout identity
21 · (1) + 5 · (−4) = 1

and so we obtain

s = 4 · 21 + 9 · (−20) (mod 105) = −96 (mod 105) = 9 (mod 105)

7. You may need a calculator to facilitate the computations. Let us consider the Mignotte’s SSS with
n = 4 and t = 2. Let m1 = 6, m2 = 11, m3 = 13, m4 = 19. Let the secret be s = 666.

(a) Let the secret be s = 666. To compute the share si, we compute si = s (mod mi):

s1 = 0 (mod 6) s2 = 6 (mod 11)

s3 = 3 (mod 13) s4 = 1 (mod 19)

(b) We start from s1 = 0 (mod 6), s3 = 3 (mod 13) and s4 = 1 (mod 19).
From the Bezout’s identity 13 · 3 + 19 · (−2) = 1, we have

s3,4 = 3 · (19 · (−2)) + 1 · (13 · 3) = −75 (mod 247)

Now, from the Bezout’s identity 247 + 6 · (−41) = 1, we have

s = 0 · 247− 75 · 6 · (−41) = 18450 = 666 (mod 1482)

8. Let us consider the Shamir SSS with n = 2 and t = 1. The dealer choose to work in Z3. The secret is
s = 1 and the polynomial that he randomly generate is f(x) = 1 + 2x ∈ Z3[x]

(a) To compute the shares, the dealer computes si = f(i) and so obtains

s1 = f(1) = 1 + 2 = 0 (mod 3) s2 = f(2) = 1 + 4 = 2 (mod 3)

(b) We have s1 = f(1) = 1 + 2 = 0 (mod 3) and s2 = f(2) = 1 + 4 = 2 (mod 3).
The Lagrange interpolation coefficients are

δ1,21 = 2 · (2− 1)−1 = 2 · 1−1 = 2 δ1,22 = 1 · (1− 2)−1 = 1 · (−1)−1 = −1 = 2 (mod 3)

since (−1)2 = 1 (mod 3).
So we can compute

s = s1δ
1,2
1 + s2δ

1,2
2 = 0 · 2 + 2 · 2 = 1 (mod 3)

2

9. Let us consider the Shamir SSS with n = 4 and t = 2. The dealer chooses to work in Z7. The secret
is s = 1 and the polynomial that he randomly generates is f(x) = 1 + 3x+ 6x2

(a) To compute the shares, the dealer computes si = f(i) and so obtains

s1 = f(1) = 1 + 3 + 6 = 3 (mod 7) s2 = f(2) = 1 + 6 + 24 = 3 (mod 7)

s3 = f(3) = 1 + 9 + 54 = 1 (mod 7) s4 = f(4) = 1 + 12 + 6 · 2 = 4 (mod 7)

(b) We have s1 = 3 (mod 7), s2 = 3 (mod 7) and s3 = 1 (mod 7).
The Lagrange interpolation coefficients are

δ1,2,31 =
(
2 · (2− 1)−1

) (
3 · (3− 1)−1

)
= 2 · 1−1 · 3 · 2−1

to compute 2−1, we use the extended Euclidean algorithm and obtain that 2−1 = 4 (mod 7)

δ1,2,31 =
(
2 · (2− 1)−1

) (
3 · (3− 1)−1

)
= 2 · 1−1 · 3 · 2−1 = 2 · 3 · 4 = 3 (mod 7)

δ1,2,32 =
(
1 · (1− 2)−1

) (
3 · (3− 2)−1

)
= 1 · (−1)−1 · 3 · 1−1 = 1 · (−1) · 3 = −3 = 4 (mod 7)

δ1,2,33 =
(
1 · (1− 3)−1

) (
2 · (2− 3)−1

)
= 1 · (−2)−1 · 2 · (−1)−1

since 2−1 = 4, the inverse of −2 is (−2)−1 = (−1)−1(2)−1 = (−1) · 4 = −4 = 3 (mod 7)

δ1,2,33 =
(
1 · (1− 3)−1

) (
2 · (2− 3)−1

)
= 1 · (−2)−1 · 2 · (−1)−1 = 3 · 2 · (−1) = −6 = 1 (mod 7)

Finally, we have:

s = s1δ
1,2,3
1 + s2δ

1,2,3
2 + s3δ

1,2,3
3 = 3 · 3 + 3 · 4 + 1 · 1 = 2 + 5 + 1 = 1 (mod 7)

10. Victor’s transcript will consist of a sequence of three-message rounds of the form

P → V. : R1

V → P. : b1

P → V. : z1

P → V. : R2

V → P. : b2

P → V. : z2

. . .

When bk = 0, Victor checked z2k = Rk and when bk = 1, he checked z2k = Rk · X. Since the check
succeeded a number of times with random choices of bk, Victor became convinced that Peggy knows
x.

But the transcript does not convince you, since Victor could have produced this transcript without
interacting with Peggy at all. He just chooses in each round both bk and zk at random and then sets
Rk = z2k if bk = 0 and Rk = z2k ·X−1 if bk = 1.

Hard

11. Let us consider a Secure Multi Party Computation (SMPC) protocol for addition between 2 parties.
Every party will use a Shamir SSS with n = 2 and t = 1. The parties decide to work in Z5. The
secrets are s1 = 1 and s2 = 2 and they want to compute the sum of the two values. The polynomials
that they randomly generate are f1(x) = 1 + 3x for P1 and f2(x) = 2 + x for P2.

3

(a) The shares are computed with si,j = fi(j) (mod 5) and so we obtain

s1,1 = f1(1) = 4 s1,2 = f1(2) = 2

s2,1 = f2(1) = 3 s2,2 = f2(2) = 4

(b) The partial results are

a1 = s1,1 + s2,1 = 4 + 3 = 2 a2 = s1,2 + s2,2 = 2 + 4 = 1

(c) The Lagrange interpolation coefficients are

δ1,21 = 2 · (2− 1)−1 = 2 · (1)−1 = 2 δ1,22 = 1 · (1− 2)−1 = 1 · (−1)−1 = 4 (mod 5)

where the inverse of −1 modulus 5 is −1 since (−1)2 = 1. The final result is

a1δ
1,2
1 + a2δ

1,2
2 = 2 · 2 + 1 · 4 = 3 (mod 5) = s1 + s2

12. (a) B has received M ⊕NA in message 1 and M ⊕NA ⊕NB ⊕NA in message 3. The latter can be
simplified to M ⊕NB . Thus B can recover M by xor-ing the content of message 3 with his own
nonce NB .

(b) No. An eavesdropper can compute M1 ⊕M2 = NB ; he then has the same knowledge as B and
can recover M in the same way.

13. (a) If her received response is c, she computes r ⊕ c and checks that she gets k. If the receiver does
know k and follows the protocol, c = r ⊕ k and Alice’s computation will be r ⊕ (r ⊕ k) = k.

(b) No. An eavesdropping adversary that hears a protocol run can do the same computation as Alice
and recover k.

14. Proposition:1 Given a year with N days, the generalized birthday problem asks for the minimal
number n such that, in a set of n randomly chosen people, the probability of a birthday coincidence
is at least 50% (assuming that birthdays are independent random variables with same distribution
Pr(X = day) = 1

N .
In other words, n is the minimal integer such that

1−
n−1∏
i=1

(
N − i
N

)
≥ 1

2

and
n ' 1.177

√
N

Proof:

Fact 1: If x1, · · · , xn are real numbers, then

n∏
i=1

(1− xi) ≤ e−
∑n

i=1 xi

Fact 2: for a natural number n
n∑

i=1

i =
1

2
n(n+ 1)

From these two facts, we obtain

n−1∏
i=1

(
1− i

N

)
≤ e−

∑n−1
i=1

i
N = e−

1
N

∑n−1
i=1 i = e−

(n−1)n
2N

We consider now

e−
(n−1)n

2N ≥ 1

2

1Link to a interactive explanation of the birthday problem.

4

https://betterexplained.com/articles/understanding-the-birthday-paradox/

from which we can compute n:

e−
(n−1)n

2N ≥1

2

ln
(
e−

(n−1)n
2N

)
≥ ln

(
1

2

)
− (n− 1)n

2N
≥− ln 2

(n2 − n)

2N
≤ ln 2

(n2 − n) ≤ ln 2 · (2N)

Since we are considering large n values, we can consider n2 − n to be equivalent to n2 and so:

n2 ≤ ln 2 · (2N)

n1,2 =
±
√

4 · ln 2 · (2N)

2
just consider the solution with positive sign since n ≥ 0

n =

√
8 ln(2)

2
·
√
N =

√
2 ln(2) ·

√
N ' 1.177

√
N

Think

15. Definition: Let d ∈ N a positive natural number. A function f :
⋃∞

n=1{0, 1}n → {0, 1}d that takes
as input an arbitrarily long bit-string and outputs a fixed length bit-string (called digest) is called
(cryptographic) hash function.
A hash function f is called a secure cryptographic hash function is the following properties hold:

• f is collision resistant (i.e., it is unfeasible to find two messages m1,m2 such that f(m1) =
f(m2)) and

• f is first-image resistant (i.e., it is unfeasible, given a digest y, to find the message m such
that f(m) = y)

An ideal perfect hash function without collisions does not exists in reality.
The simplest way to see this is:
suppose that there exists a ideal perfect secure cryptographic hash function f :

⋃∞
n=1{0, 1}n → {0, 1}d

this means that f sends an infinite set into a finite set.
Being collision resistant can be translated as: “the counter-image X of a digest y (you can think of X
as the set of inverse f−1(y)) is an unique value” (i.e., X = {m}).
Otherwise, if X contains more than one element, say X = {m1,m2} = f−1(y) then it means that we
found a collision, i.e., f(m2) = y = f(m1).
So, to avoid the collisions, the cardinality of the digest space should be bigger or at least equal to the
message space, which is never the case.
Thus in reality, there exists no real case ideal perfect secure cryptographic hash function.

16. To solve this exercise, we study a more abstract scenario:
we have k symbols in an alphabet (language, encoding, a symbolic representation) that will be encoded
with b-bit per symbol. Let n be a fixed length of a word that is represented with a index of bw bits (a
single bw-bit string representation to uniquely define a single word). We can now compute the “num-
ber of bit necessary to storage all the n-symbol long word and their unique representation” where bn
is the length of the representation and b is the number of bit necessary to represent a word per symbol.

Size = (kn) (bn + n · b) =

= (number of possible words) · (bit necessary to represent a word and its unique representation)

With this general formula, we can see the results in our specific cases:

5

a. We have n = 5 length string of k = 64 represented with b = 8 bit per symbol. SHA256 has a
digest of 256 bit and so bw = 256.
So, applying the general formula, we obtain:

Size = (kn) (bn + n · b) = (645)(256 + 5 · 8) ' 23028 = 238 bits ' 256GB

b. In this case, we changed the length to be n = 8. In the formula:

Size = (kn) (bn + n · b) = (648)(256 + 8 · 8) ' 24828 = 256 bits ' 64 PetaByte

c. We have the same values as the point before, but we have k = 62.

Size = (kn) (bn + n · b) = (628)(256 + 8 · 8) ' 24728 = 255 bits ' 32 PetaByte

d. As we can see by the formula, the strength of a password with respect a rainbow-table attack
depends mostly on the number of symbols allowed (freely without strange rules) and the length
of the password.
For this reason, long password should be preferred.
On the other hand, a secure password can become weak if the implementations, the protocols
and schemes that uses that password are not secure.

6

