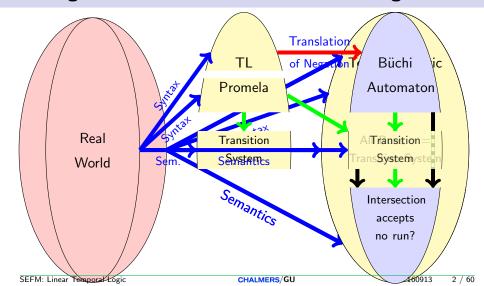
Software Engineering using Formal Methods Propositional and (Linear) Temporal Logic

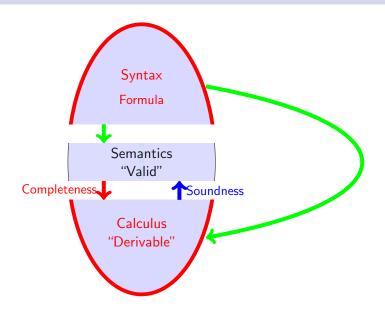
Wolfgang Ahrendt

13th September 2016

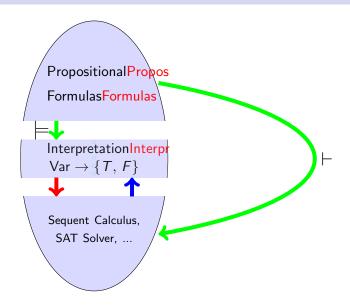
Recapitulation: FormalisationFormalisation: Syntax, SemanticsFormalisation: Syntax, Semantics, ProvingFormal Verification: Model Checking



The Big Picture: Syntax, Semantics, Calculus



Simplest Case: Propositional Logic—Syntax



Syntax of Propositional Logic

Signature

A set of Propositional Variables \mathcal{P} (with typical elements p, q, r, ...)

Propositional Connectives

true, false, \wedge , \vee , \neg , \rightarrow , \leftrightarrow

Set of Propositional Formulas For₀

- \triangleright Truth constants true, false and variables \mathcal{P} are formulas
- If ϕ and ψ are formulas then

$$\neg \phi$$
, $\phi \land \psi$, $\phi \lor \psi$, $\phi \to \psi$, $\phi \leftrightarrow \psi$

are also formulas

► There are no other formulas (inductive definition)

Remark on Concrete Syntax

	Text book	S_{PIN}
Negation	_	!
Conjunction	\wedge	&&
Disjunction	\vee	
Implication	$ ightarrow$, \supset	->
Equivalence	\leftrightarrow	<->

We use mostly the textbook notation, except for tool-specific slides, input files.

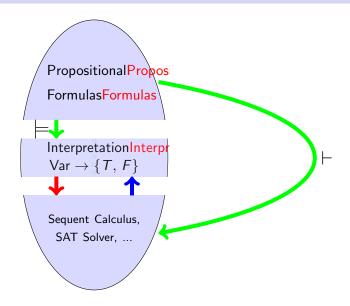
Propositional Logic Syntax: Examples

Let $\mathcal{P} = \{p, q, r\}$ be the set of propositional variables

Are the following character sequences also propositional formulas?

- ▶ true $\rightarrow p$ ✓
- $\blacktriangleright (p(q \land r)) \lor p \times$
- $ightharpoonup p
 ightarrow (q \wedge)
 ightharpoonup x$
- false \wedge $(p \rightarrow (q \wedge r))$ \checkmark

Simplest Case: Propositional Logic—Syntax



Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

$$\mathcal{I}: \mathcal{P} \to \{T, F\}$$

Example

Let
$$\mathcal{P} = \{p, q\}$$

$$p \rightarrow (q \rightarrow p)$$

$$\begin{array}{cccc} & p & q \\ \hline \mathcal{I}_1 & F & F \\ \mathcal{I}_2 & T & F \\ \vdots & \vdots & \vdots \end{array}$$

Semantics of Propositional Logic

Interpretation \mathcal{I}

Assigns a truth value to each propositional variable

$$\mathcal{I}: \mathcal{P} \to \{T, F\}$$

Valuation Function

 $val_{\mathcal{I}}$: Continuation of \mathcal{I} on For_0

$$val_{\mathcal{I}}: For_0 \rightarrow \{T, F\}$$

$$val_{\mathcal{I}}(\text{true}) = T$$

 $val_{\mathcal{I}}(\text{false}) = F$
 $val_{\mathcal{I}}(p_i) = \mathcal{I}(p_i)$

(cont'd next page)

Semantics of Propositional Logic (Cont'd)

Valuation function (Cont'd)

$$val_{\mathcal{I}}(\neg \phi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = F \\ F & \text{otherwise} \end{cases}$$

$$val_{\mathcal{I}}(\phi \wedge \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = T \text{ and } val_{\mathcal{I}}(\psi) = T \\ F & \text{otherwise} \end{cases}$$

$$val_{\mathcal{I}}(\phi \vee \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = T \text{ or } val_{\mathcal{I}}(\psi) = T \\ F & \text{otherwise} \end{cases}$$

$$val_{\mathcal{I}}(\phi \rightarrow \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = F \text{ or } val_{\mathcal{I}}(\psi) = T \\ F & \text{otherwise} \end{cases}$$

$$val_{\mathcal{I}}(\phi \leftrightarrow \psi) = \begin{cases} T & \text{if } val_{\mathcal{I}}(\phi) = val_{\mathcal{I}}(\psi) \\ F & \text{otherwise} \end{cases}$$

Valuation Examples

Example

Let
$$\mathcal{P} = \{p,q\}$$

How to evaluate $p \rightarrow (q \rightarrow p)$ in \mathcal{I}_2 ?

$$\operatorname{val}_{\mathcal{I}_2}(p \to (q \to p)) = T \text{ iff } \operatorname{val}_{\mathcal{I}_2}(p) = F \text{ or } \operatorname{val}_{\mathcal{I}_2}(q \to p) = T$$
 $\operatorname{val}_{\mathcal{I}_2}(p) = \mathcal{I}_2(p) = T$
 $\operatorname{val}_{\mathcal{I}_2}(q \to p) = T \text{ iff } \operatorname{val}_{\mathcal{I}_2}(q) = F \text{ or } \operatorname{val}_{\mathcal{I}_2}(p) = T$
 $\operatorname{val}_{\mathcal{I}_2}(q) = \mathcal{I}_2(q) = F$

Semantic Notions of Propositional Logic

Let
$$\phi \in For_0$$
, $\Gamma \subseteq For_0$

Definition (Satisfying Interpretation, Consequence Relation)

$$\mathcal{I}$$
 satisfies ϕ (write: $\mathcal{I} \models \phi$) iff $val_{\mathcal{I}}(\phi) = \mathcal{T}$

 ϕ follows from Γ (write: $\Gamma \models \phi$) iff for all interpretations \mathcal{I} :

If
$$\mathcal{I} \models \psi$$
 for all $\psi \in \Gamma$, then also $\mathcal{I} \models \phi$

Definition (Satisfiability, Validity)

A formula is satisfiable if it is satisfied by some interpretation.

If every interpretation satisfies ϕ (write: $\models \phi$) then ϕ is called valid.

Semantics of Propositional Logic: Examples

Formula (same as before)

$$p \rightarrow (q \rightarrow p)$$

Is this formula valid?

$$\models p \rightarrow (q \rightarrow p)$$
?

Semantics of Propositional Logic: Examples

$$p \wedge ((\neg p) \vee q)$$

Satisfiable?

V

Satisfying Interpretation?

$$\mathcal{I}(p) = T, \ \mathcal{I}(q) = T$$

Other Satisfying Interpretations?

X

Therefore, not valid!

$$p \wedge ((\neg p) \vee q) \models q \vee r$$

Does it hold? Yes. Why?

An Exercise in Formalisation

```
1 byte n;
2 active proctype [2] P() {
3    n = 0;
4    n = n + 1
5 }
```

Can we characterise the states of P propositionally?

Find a propositional formula ϕ_P which is true if and only if it describes a possible state of P.

$$\phi_{\mathrm{P}} := \left(\frac{\left(\left(PC0_3 \land \neg PC0_4 \land \neg PC0_5 \right) \lor \cdots \right) \land}{\left(PC1_5 \right) \Rightarrow \left(PC1_5 \right) \Rightarrow \left(PC1_5 \right) \land} \right) \land \cdots \right)_{160913}$$

An Exercise in Formalisation

2 active proctype [2] P() {

```
3  n = 0;
4  n = n + 1
5 }

P: N<sub>0</sub>, N<sub>1</sub>, N<sub>2</sub>,..., N<sub>7</sub> 8-bit representation of byte
    PCO<sub>3</sub>, PCO<sub>4</sub>, PCO<sub>5</sub>, PCI<sub>3</sub>, PCI<sub>4</sub>, PCI<sub>5</sub> next instruction pointer
```

Which interpretations do we need to "exclude"?

- ▶ The variable n is represented by eight bits, all values possible
- ▶ A process cannot be at two positions at the same time
- ▶ If neither process 0 nor process 1 are at position 5, then n is zero
- **.**..

1 byte n;

$$\phi_{\mathbf{P}} := \left(\begin{array}{c} ((PC0_3 \land \neg PC0_4 \land \neg PC0_5) \lor \cdots) \land \\ ((\neg PC0_5 \land \neg PC1_5) \implies (\neg N_0 \land \cdots \land \neg N_7)) \land \cdots \end{array} \right)$$

Is Propositional Logic Enough?

Can design for a program P a formula Φ_P describing all reachable states

For a given property Ψ the consequence relation

$$\Phi_p \models \Psi$$

holds when Ψ is true in any possible state reachable in any run of P

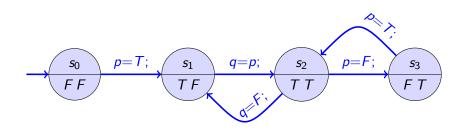
But How to Express Properties Involving State Changes?

In any run of a program P

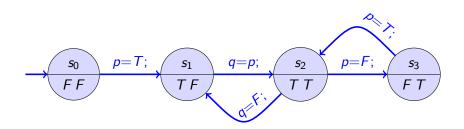
- n will become greater than 0 eventually?
- ► *n* changes its value infinitely often etc.

⇒ Need a more expressive logic: (Linear) Temporal Logic

Transition systems (aka Kripke Structures)

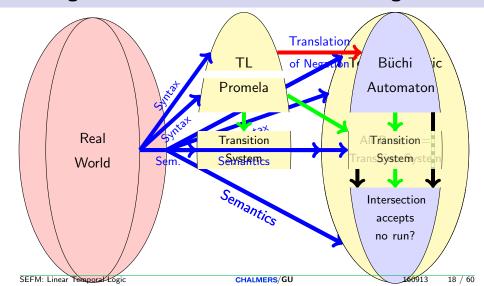


Transition systems (aka Kripke Structures)



- **Each** state s_i has its own propositional interpretation \mathcal{I}_i
 - ► Convention: list interpretation of variables in lexicographic order
- ► Computations, or runs, are *infinite* paths through states
 - ▶ Intuitively 'finite' runs modelled by looping on last state
- ► How to express (for example) that *p* changes its value infinitely often in each run?

Recapitulation: FormalisationFormalisation: Syntax, SemanticsFormalisation: Syntax, Semantics, ProvingFormal Verification: Model Checking



Linear Temporal Logic—Syntax

An extension of propositional logic that allows to specify properties of all runs

Syntax

Based on propositional signature and syntax

Extension with three connectives:

Always If ϕ is a formula, then so is $\Box \phi$

Eventually If ϕ is a formula, then so is $\Diamond \phi$

Until If ϕ and ψ are formulas, then so is $\phi \mathcal{U} \psi$

Concrete Syntax

	text book	Spin
Always		[]
Eventually	\Diamond	<>
Until	\mathcal{U}	U

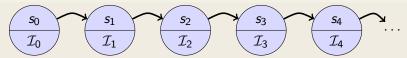
Linear Temporal Logic Syntax: Examples

Let $\mathcal{P} = \{p, q\}$ be the set of propositional variables.

- ▶ p
- ► false
- ightharpoonup p
 ightarrow q
- □ g
- $ightharpoonup \Box \Diamond \Box (p
 ightharpoonup q)$
- $\blacktriangleright (\Box p) \to ((\Diamond p) \vee \neg q)$
- ▶ $pU(\Box q)$

Temporal Logic—Semantics

A run σ is an infinite chain of states



 \mathcal{I}_j propositional interpretation of variables in state s_j Write more compactly $s_0 s_1 s_2 s_3 \dots$

If $\sigma = s_0 s_1 \cdots$, then $\sigma|_i$ denotes the suffix $s_i s_{i+1} \cdots$ of σ .

Temporal Logic—Semantics (Cont'd)

Valuation of temporal formula relative to run (infinite sequence of states)

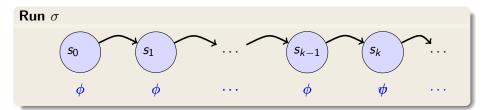
Definition (Validity Relation)

Validity of temporal formula depends on runs $\sigma = s_0 s_1 \dots$

$$\begin{array}{lll} \sigma \models \rho & \text{iff} & \mathcal{I}_0(\rho) = T \text{, for } \rho \in \mathcal{P}. \\ \sigma \models \neg \phi & \text{iff} & \text{not } \sigma \models \phi \quad \text{(write } \sigma \not\models \phi \text{)} \\ \sigma \models \phi \land \psi & \text{iff} & \sigma \models \phi \text{ and } \sigma \models \psi \\ \sigma \models \phi \lor \psi & \text{iff} & \sigma \models \phi \text{ or } \sigma \models \psi \\ \sigma \models \phi \to \psi & \text{iff} & \sigma \not\models \phi \text{ or } \sigma \models \psi \end{array}$$

Temporal connectives?

Temporal Logic—Semantics (Cont'd)



Definition (Validity Relation for Temporal Connectives)

Given a run $\sigma = s_0 \, s_1 \cdots$ $\sigma \models \Box \phi \qquad \text{iff} \quad \sigma|_k \models \phi \text{ for all } k \geq 0$ $\sigma \models \Diamond \phi \qquad \text{iff} \quad \sigma|_k \models \phi \text{ for some } k \geq 0$ $\sigma \models \phi \mathcal{U} \psi \qquad \text{iff} \quad \sigma|_k \models \psi \text{ for some } k \geq 0, \text{ and } \sigma|_j \models \phi \text{ for all } 0 \leq j < k$ $\text{(if } k = 0 \text{ then } \phi \text{ needs never hold)}$

Safety and Liveness Properties

Safety Properties

- ► Always-formulas called safety properties: "something bad never happens"
- ▶ Let mutex ("mutual exclusion") be a variable that is true when two processes do not access a critical resource at the same time
- ▶ □ mutex expresses that simultaneous access never happens

Liveness Properties

- ► Eventually-formulas called liveness properties: "something good happens eventually"
- Let s be variable that is true when a process delivers a service
- ▶ ♦ s expresses that service is eventually provided

Complex Properties

What does this mean?Infinitely Often

$$\sigma \models \Box \Diamond \phi$$

"During run σ the formula ϕ becomes true infinitely often"

Validity of Temporal Logic

Definition (Validity)

 ϕ is valid, write $\models \phi$, iff $\sigma \models \phi$ for all runs $\sigma = s_0 s_1 \cdots$.

Recall that each run $s_0 s_1 \cdots$ essentially is an infinite sequence of interpretations $\mathcal{I}_0 \mathcal{I}_1 \cdots$

Representation of Runs

Can represent a set of runs as a sequence of propositional formulas:

 $ightharpoonup \phi_0 \phi_1, \cdots$ represents all runs $s_0 s_1 \cdots$ such that $s_i \models \phi_i$ for $i \geq 0$

Semantics of Temporal Logic: Examples

$\Diamond\Box\phi$

Valid?

No, there is a run where it is not valid: $(\neg \phi \neg \phi \neg \phi \dots)$

Valid in some run?

Yes, for example: $(\neg \phi \phi \phi \ldots)$

$$\Box \phi \rightarrow \phi$$

$$(\neg \Box \phi) \leftrightarrow (\Diamond \neg \phi)$$

$$\Diamond \phi \leftrightarrow (\text{true } \mathcal{U}\phi)$$

All are valid! (proof is exercise)

- ▶ □ is reflexive
- ▶ □ and ◊ are dual connectives
- ightharpoonup and \Diamond can be expressed with only using $\mathcal U$

Transition Systems: Formal Definition

Definition (Transition System)

A transition system $\mathcal{T}=(S, \mathit{Ini}, \delta, \mathcal{I})$ is composed of a set of states S, a set $\emptyset \neq \mathit{Ini} \subseteq S$ of initial states, a transition relation $\delta \subseteq S \times S$, and a labeling \mathcal{I} of each state $s \in S$ with a propositional interpretation \mathcal{I}_s .

Definition (Run of Transition System)

A run of \mathcal{T} is a sequence of states $\sigma = s_0 s_1 \cdots$ such that $s_0 \in Ini$ and for all i is $s_i \in S$ as well as $(s_i, s_{i+1}) \in \delta$.

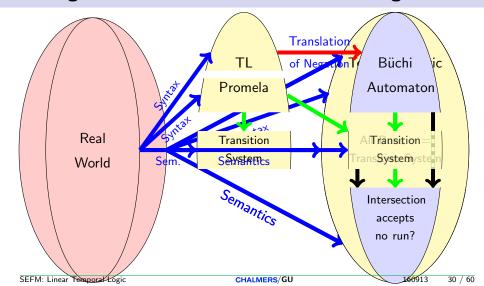
Temporal Logic—Semantics (Cont'd)

Extension of validity of temporal formulas to transition systems:

Definition (Validity Relation)

Given a transition system $\mathcal{T} = (S, Ini, \delta, \mathcal{I})$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T} \models \phi$) iff $\sigma \models \phi$ for all runs σ of \mathcal{T} .

Recapitulation: FormalisationFormalisation: Syntax, SemanticsFormalisation: Syntax, Semantics, ProvingFormal Verification: Model Checking



ω -Languages

Given a finite alphabet (vocabulary) Σ

An ω -word $w \in \Sigma^{*\omega}$ is a n infinite sequence

$$w = a_o \cdots a_{nk} \cdots$$

with $a_i \in \Sigma, i \in \{0, \ldots, n\}\mathbb{N}$

 $\mathcal{L}^{\omega} \subseteq \Sigma^{*\omega}$ is called a n ω -language

Büchi Automaton

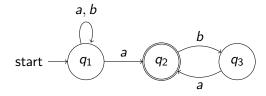
Definition (Büchi Automaton)

A (non-deterministic) Büchi automaton over an alphabet Σ consists of a

- ▶ finite, non-empty set of locations Q
- ▶ a non-empty set of initial/start locations $I \subseteq Q$
- ▶ a set of accepting locations $F = \{F_1, ..., F_n\} \subseteq Q$
- ▶ a transition relation $\delta \subseteq Q \times \Sigma \times Q$

Example

$$\Sigma = \{a,b\}, Q = \{q_1,q_2,q_3\}, I = \{q_1\}, F = \{q_2\}$$



Büchi Automaton—Executions and Accepted Words

Definition (Execution)

Let $\mathcal{B} = (Q, I, F, \delta)$ be a Büchi automaton over alphabet Σ .

An execution of \mathcal{B} is a pair (w, v), with

- $ightharpoonup w = a_o \cdots a_k \cdots \in \Sigma^{\omega}$
- $\mathbf{v} = q_o \cdots q_k \cdots \in Q^{\omega}$

where $q_0 \in I$, and $(q_i, a_i, q_{i+1}) \in \delta$, for all $i \in \mathbb{N}$

Definition (Accepted Word)

A Büchi automaton $\mathcal B$ accepts a word $w \in \Sigma^{\omega}$, if there exists an execution (w,v) of $\mathcal B$ where some accepting location $f \in F$ appears infinitely often in v.

Büchi Automaton—Language

Let
$$\mathcal{B} = (Q, I, F, \delta)$$
 be a Büchi automaton, then

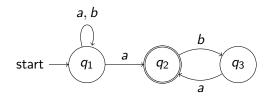
$$\mathcal{L}^{\omega}(\mathcal{B}) = \{ w \in \Sigma^{\omega} | w \in \Sigma^{\omega} \text{ is an accepted word of } \mathcal{B} \}$$

denotes the ω -language recognised by \mathcal{B} .

An ω -language for which an accepting Büchi automaton exists is called ω -regular language.

Example, ω -Regular Expression

Which language is accepted by the following Büchi automaton?



Solution:
$$(a+b)^*(ab)^{\omega}$$

[NB:
$$(ab)^{\omega} = a(ba)^{\omega}$$
]

 ω -regular expressions similar to standard regular expression

ab a followed by b

a+b a or b

a* arbitrarily, but finitely often a

new: a^{ω} infinitely often a

Decidability, Closure Properties

Many properties for regular finite automata hold also for Büchi automata

Theorem (Decidability)

It is decidable whether the accepted language $\mathcal{L}^{\omega}(\mathcal{B})$ of a Büchi automaton \mathcal{B} is empty.

Theorem (Closure properties)

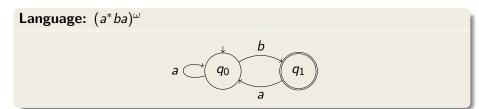
The set of ω -regular languages is closed with respect to intersection, union and complement:

- if $\mathcal{L}_1, \mathcal{L}_2$ are ω -regular then $\mathcal{L}_1 \cap \mathcal{L}_2$ and $\mathcal{L}_1 \cup \mathcal{L}_2$ are ω -regular
- \mathcal{L} is ω -regular then $\Sigma^{\omega} \setminus \mathcal{L}$ is ω -regular

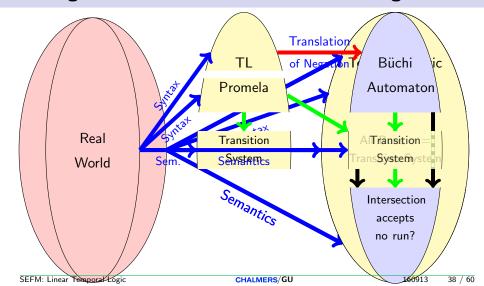
But in contrast to regular finite automata:

Non-deterministic Büchi automata are strictly more expressive than deterministic ones.

Büchi Automata—More Examples



Recapitulation: FormalisationFormalisation: Syntax, SemanticsFormalisation: Syntax, Semantics, ProvingFormal Verification: Model Checking



Linear Temporal Logic and Büchi Automata

LTL and Büchi Automata are connected

Recall

Definition (Validity Relation)

Given a transition system $\mathcal{T} = (S, Ini, \delta, \mathcal{I})$, a temporal formula ϕ is valid in \mathcal{T} (write $\mathcal{T} \models \phi$) iff $\sigma \models \phi$ for all runs σ of \mathcal{T} .

A run of the transition system is an infinite sequence of interpretations $\mathcal{I}.$

Intended Connection

Given an LTL formula ϕ :

Construct a Büchi automaton accepting exactly those runs (infinite sequences of interpretations) that satisfy ϕ .

Encoding an LTL Formula as a Büchi Automaton

 ${\mathcal P}$ set of propositional variables, e.g., ${\mathcal P}=\{r,s\}$

Suitable alphabet Σ for Büchi automaton?

A state transition of Büchi automaton must represent an interpretation

Choose Σ to be the set of all interpretations over \mathcal{P} , encoded as $2^{\mathcal{P}}$

Example

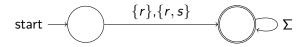
$$\Sigma = \{\emptyset, \{r\}, \{s\}, \{r, s\}\}$$

$$I_{\emptyset}(r) = F, I_{\emptyset}(s) = F, I_{\{r\}}(r) = T, I_{\{r\}}(s) = F, \dots$$

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula r over $\mathcal{P} = \{r, s\}$)

A Büchi automaton ${\mathcal B}$ accepting exactly those runs σ satisfying r



In the first state s_0 (of σ) at least r must hold, the rest is arbitrary

Example (Büchi automaton for formula $\Box r$ **over** $\mathcal{P} = \{r, s\}$ **)**

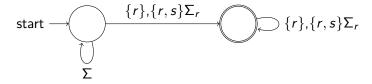
start
$$\longrightarrow \{r\}, \{r, s\} \Sigma_r$$

 $\Sigma_r := \{I | I \in \Sigma, r \in I\}$

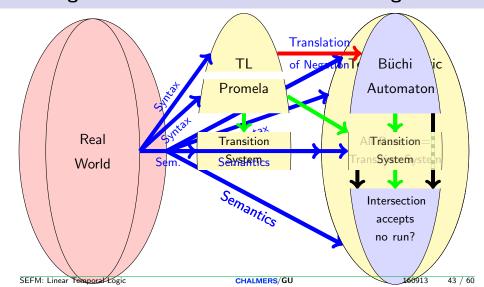
In all states s (of σ) at least r must hold

Büchi Automaton for LTL Formula By Example

Example (Büchi automaton for formula $\Diamond \Box r$ **over** $\mathcal{P} = \{r, s\}$ **)**



Recapitulation: FormalisationFormalisation: Syntax, SemanticsFormalisation: Syntax, Semantics, ProvingFormal Verification: Model Checking



Model Checking

Check whether a formula is valid in all runs of a transition system.

Given a transition system \mathcal{T} (e.g., derived from a PROMELA program).

Verification task: is the LTL formula ϕ satisfied in all runs of \mathcal{T} , i.e.,

$$\mathcal{T} \models \phi$$
 ?

Temporal model checking with SPIN: Topic of next lecture

Today: Basic principle behind SPIN model checking

Spin Model Checking—Overview

$$\mathcal{T} \models \phi$$
 ?

- 1. Represent transition system $\mathcal T$ as Büchi automaton $\mathcal B_{\mathcal T}$ such that $\mathcal B_{\mathcal T}$ accepts exactly those words corresponding to runs through $\mathcal T$
- 2. Construct Büchi automaton $\mathcal{B}_{\neg \phi}$ for negation of formula ϕ
- **3.** If

$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi}) = \emptyset$$

then $\mathcal{T} \models \phi$ holds.

lf

$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi}) \neq \emptyset$$

then each element of the set is a counterexample for ϕ .

To check $\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi})$ construct intersection automaton and search for cycle through accepting state.

Representing a Model as a Büchi Automaton

First Step: Represent transition system $\mathcal T$ as Büchi automaton $\mathcal B_{\mathcal T}$ accepting exactly those words representing a run of $\mathcal T$

Example

```
Ø
active proctype P () {
                              start
do
  :: atomic {
                                        \{wP\}
                                                         \{wQ\}
      !wQ; wP = true
     };
     Pcs = true;
                                         2
                                                      Ø
     atomic {
      Pcs = false;
                              \{wP, Pcs\}
                                                             \{wQ, Qcs\}
      wP = false
                                                            5
                                         4
od }
```

Similar code for process ${\tt Q}.$

Second atomic block just to keep automaton small.

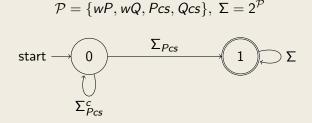
Büchi Automaton $B_{\neg \phi}$ **for** $\neg \phi$

Second Step:

Construct Büchi automaton corresponding to negated LTL formula

 $\mathcal{T} \models \phi \text{ holds iff there is } \underset{\bullet}{\text{no}} \text{ accepting run } \sigma \text{ of } \mathcal{T} \text{ s.t. } \sigma \models \neg \phi$ Simplify $\neg \phi = \neg \Box \neg Pcs = \Diamond Pcs$

Büchi Automaton $\mathcal{B}_{\neg \phi}$

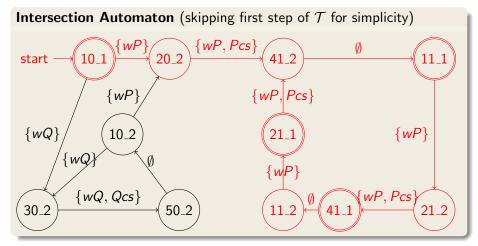


$$\Sigma_{Pcs} = \{I | I \in \Sigma, Pcs \in I\}, \quad \Sigma_{Pcs}^{c} = \Sigma - \Sigma_{Pcs}$$

Checking for Emptiness of Intersection Automaton

Third Step:
$$\mathcal{L}^{\omega}(\mathcal{B}_{\mathcal{T}}) \cap \mathcal{L}^{\omega}(\mathcal{B}_{\neg \phi}) = \neq \emptyset$$
 ?

Counterexample Construction of intersection automaton: Appendix



Literature for this Lecture

Ben-Ari Section 5.2.1 (only syntax of LTL)

Baier and Katoen Principles of Model Checking,

May 2008, The MIT Press,

ISBN: 0-262-02649-X

Appendix I:

Intersection Automaton

Construction

Construction of Intersection Automaton

Given: two Büchi automata $\mathcal{B}_i = (Q_i, \delta_i, I_i, F_i), i = 1, 2$

Wanted: a Büchi automaton

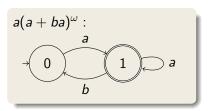
$$\mathcal{B}_{1\cap 2} = (Q_{1\cap 2}, \delta_{1\cap 2}, I_{1\cap 2}, F_{1\cap 2})$$

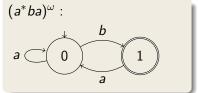
accepting a word w iff w is accepted by \mathcal{B}_1 and \mathcal{B}_2

Maybe just the product automaton as for regular automata?

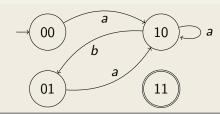
First Attempt: Product Automata for Intersection

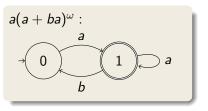
$$\Sigma = \{a, b\}, \ a(a + ba)^{\omega} \cap (a^*ba)^{\omega} = \emptyset$$
? No, e.g., $a(ba)^{\omega}$

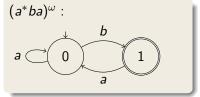


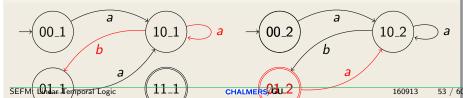


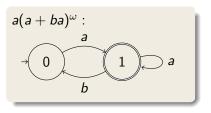
Product Automaton: accepting location 11 never reached

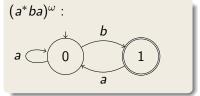


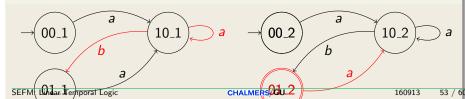


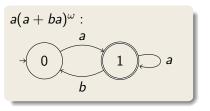


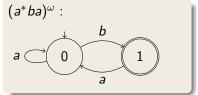


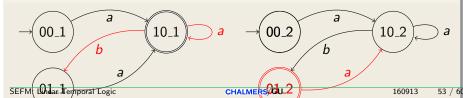


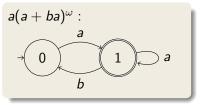


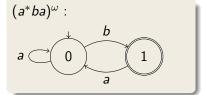


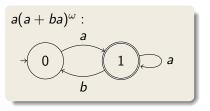


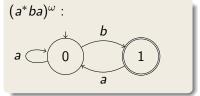


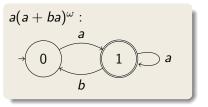


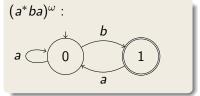


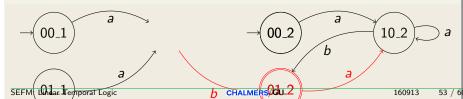


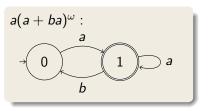


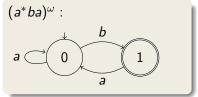


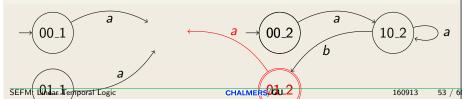












Appendix II:

Construction of a Büchi Automaton \mathcal{B}_{ϕ} for an LTL-Formula ϕ

The General Case: Generalised Büchi Automata

A generalised Büchi automaton is defined as:

$$\mathcal{B}^{g} = (Q, \delta, I, \mathbb{F})$$

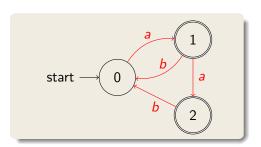
 Q, δ, I as for standard Büchi automata

$$\mathbb{F} = \{\mathcal{F}_1, \dots, \mathcal{F}_n\}$$
, where $\mathcal{F}_i = \{q_{i1}, \dots, q_{im_i}\} \subseteq Q$

Definition (Acceptance for generalised Büchi automata)

A generalised Büchi automaton accepts an ω -word $w \in \Sigma^{\omega}$ iff for every $i \in \{1, \ldots, n\}$ at least one $q_{ik} \in \mathcal{F}_i$ is visited infinitely often.

Normal vs. Generalised Büchi Automata: Example



$$\mathcal{B}^{normal}$$
 with $\mathcal{F}=\{1,2\}$, $\mathcal{B}^{general}$ with $\mathbb{F}=\{\overbrace{\{1\}}^{\mathcal{F}_1},\overbrace{\{2\}}^{\mathcal{F}_2}\}$

Which ω -word is accepted by which automaton?

$\omega ext{-word}$	\mathcal{B}^{normal}	$\mathcal{B}^{ extit{general}}$
$(ab)^{\omega}$	V	×
$(aab)^\omega$	✓	✓

Fischer-Ladner Closure

Fischer-Ladner closure of an LTL-formula ϕ

$$\mathit{FL}(\phi) = \{ \varphi | \varphi \text{ is subformula or negated subformula of } \phi \}$$

 $(\neg\neg\varphi)$ is identified with φ

Example

$$FL(rUs) = \{r, \neg r, s, \neg s, rUs, \neg (rUs)\}$$

\mathcal{B}_{ϕ} -Construction: Locations

Assumption:

 \mathcal{U} only temporal logic operator in LTL-formula (can express \square, \lozenge with \mathcal{U})

Locations of \mathcal{B}_{ϕ} are $Q \subseteq 2^{FL(\phi)}$ where each $a \in Q$ satisfies:

- **Consistent, Total** $\flat \psi \in FL(\phi)$: exactly one of ψ and $\neg \psi$ in q
 - $\blacktriangleright \psi_1 \mathcal{U} \psi_2 \in (FL(\phi) \backslash q) \text{ then } \psi_2 \not\in q$

Downward Closed

- $\psi_1 \wedge \psi_2 \in q$: $\psi_1 \in q$ and $\psi_2 \in q$
- ... other propositional connectives similar
- \bullet $\psi_1 \mathcal{U} \psi_2 \in \mathfrak{q}$ then $\psi_1 \in \mathfrak{q}$ or $\psi_2 \in \mathfrak{q}$

$$FL(rUs) = \{r, \neg r, s, \neg s, rUs, \neg (rUs)\}$$

$$\frac{\in Q}{\{rUs, \neg r, s\}} \frac{\{rUs, \neg r, s\}}{\{\neg (rUs), r, s\}} \frac{X}{\{\neg (rUs), r, s\}}$$

\mathcal{B}_{ϕ} -Construction: Transitions

$$\{r\mathcal{U}s, \neg r, s\}, \{r\mathcal{U}s, r, \neg s\}, \{r\mathcal{U}s, r, s\}, \{\neg (r\mathcal{U}s), r, \neg s\}, \{\neg (r\mathcal{U}s), \neg r, \neg s\}\}$$

$$q_1 \qquad q_2 \qquad q_3 \qquad q_4 \qquad q_5 \qquad q_5 \qquad q_5 \qquad q_5 \qquad q_6 \qquad$$

Transitions $(q, \alpha, q') \in \delta_{\phi}$:

$$\alpha = \mathbf{q} \cap \mathcal{P}$$

 \mathcal{P} set of propositional variables outgoing edges of q_1 labeled $\{s\}$, of q_2 labeled $\{r\}$, etc.

- 1. If $\psi_1 \mathcal{U} \psi_2 \in \mathfrak{q}$ and $\psi_2 \notin \mathfrak{q}$ then $\psi_1 \mathcal{U} \psi_2 \in a'$
- **2.** If $\psi_1 \mathcal{U} \psi_2 \in (FL(\phi) \backslash q)$ and $\psi_1 \in a$ then $\psi_1 \mathcal{U} \psi_2 \notin a'$

Initial locations

$$q \in I_\phi$$
 iff $\phi \in q$

59 / 60

Accepting locations

CHALMERS/GU TO CT

Remarks on Generalized Büchi Automata

- Construction always gives exponential number of states in $|\phi|$
- Satisfiability checking of LTL is PSPACE-complete
- There exist (more complex) constructions that minimize number of required states
 - ► One of these is used in SPIN, which moreover computes the states lazily