Software Engineering using Formal Methods First-Order Logic

Wolfgang Ahrendt

27th September 2016

Install the KeY-Tool...

Follow instructions on course page, under:

- ⇒Links, Papers, and Software / Tools
 - ▶ We recommend using Java Web Start
 - ► Alternatively, install KeY locally, as binary or Eclipse plugin

Motivation for Introducing First-Order Logic

1) We specify JAVA programs with Java Modeling Language (JML)

JML combines

- ▶ JAVA expressions
- ► First-Order Logic (FOL)

2) We verify JAVA programs using Dynamic Logic

Dynamic Logic combines

- ► First-Order Logic (FOL)
- ▶ JAVA programs

SEFM: First-Order Logic CHALMERS

FOL: Language and Calculus

We introduce:

- ▶ FOL as a language
- Sequent calculus for proving FOL formulas
- KeY system as propositional, and first-order, prover (for now)
- Formal semantics

Part I

The Language of FOL

First-Order Logic: Signature

Signature

A first-order signature Σ consists of

- ▶ a set T_{Σ} of types
- ightharpoonup a set F_{Σ} of function symbols
- ▶ a set P_{Σ} of predicate symbols
- a typing α_{Σ}

Intuitively, the typing α_{Σ} determines

- for each function and predicate symbol:
 - ▶ its arity, i.e., number of arguments
 - its argument types
- for each function symbol its result type.

Formally:

- lacktriangledown $lpha_{\Sigma}(f) \in T_{\Sigma}^* \times T_{\Sigma}$ for all $f \in F_{\Sigma}$ (arity of f is $|\alpha_{\Sigma}(f)| 1$)

SEFM: First-Order Logic CHALMERS 160927 6 / 5

Example Signature Σ_1 + Constants

$$egin{aligned} T_{\Sigma_1} &= \{ ext{int} \}, \ F_{\Sigma_1} &= \{ +, - \} \cup \{ ..., -2, -1, 0, 1, 2, ... \}, \ P_{\Sigma_1} &= \{ < \} \ & lpha_{\Sigma_1}(<) = (ext{int,int}) \ & lpha_{\Sigma_1}(+) = lpha_{\Sigma_1}(-) = (ext{int,int,int}) \ & lpha_{\Sigma_1}(0) = lpha_{\Sigma_1}(1) = lpha_{\Sigma_1}(-1) = ... = (ext{int}) \end{aligned}$$

Constant Symbols

A function symbol f with $|\alpha_{\Sigma_1}(f)| = 1$ (i.e., with arity 0) is called *constant symbol*.

Here, the constant symbols are: \dots , -2, -1, 0, 1, 2, \dots

Syntax of First-Order Logic: Signature Cont'd

Type declaration of signature symbols

- Write τ x; to declare variable x of type τ
- Write $p(\tau_1, \ldots, \tau_r)$; for $\alpha(p) = (\tau_1, \ldots, \tau_r)$
- Write τ $f(\tau_1, \ldots, \tau_r)$; for $\alpha(f) = (\tau_1, \ldots, \tau_r, \tau)$

r = 0 is allowed, then write f instead of f().

Example

```
Variables integerArray a; int i;

Predicate Symbols isEmpty(List); alertOn;

Function Symbols int arrayLookup(int); Object o;
```

SEFM: First-Order Logic CHALMERS

Example Signature Σ_1 + Notation

Typing of Signature:

```
\begin{split} &\alpha_{\Sigma_1}(<) = (\text{int,int}) \\ &\alpha_{\Sigma_1}(+) = \alpha_{\Sigma_1}(-) = (\text{int,int,int}) \\ &\alpha_{\Sigma_1}(0) = \alpha_{\Sigma_1}(1) = \alpha_{\Sigma_1}(-1) = \dots = (\text{int}) \end{split}
```

can alternatively be written as:

```
<(int,int);
int +(int,int);
int 0; int 1; int -1; ...
```

First-Order Terms

We assume a set V of variables $(V \cap (F_{\Sigma} \cup P_{\Sigma}) = \emptyset)$. Each $v \in V$ has a unique type $\alpha_{\Sigma}(v) \in T_{\Sigma}$.

Terms are defined recursively:

Terms

A first-order term of type $au \in T_{\Sigma}$

- \blacktriangleright is either a variable of type τ , or
- ▶ has the form $f(t_1,...,t_n)$, where $f \in F_{\Sigma}$ has result type τ , and each t_i is term of the correct type, following the typing α_{Σ} of f.

If f is a constant symbol, the term is written f, instead of f().

Terms over Signature Σ_1

Example terms over Σ_1 : (assume variables int v_1 ; int v_2 ;)

- **▶** -7
- **►** +(-2, 99)
- **▶** -(7, 8)
- \rightarrow +(-(7, 8), 1)
- \rightarrow +(-(v_1 , 8), v_2)

Our variant of FOL allows infix notation for common functions:

- **▶** -2 + 99
- **▶** 7 8
- \blacktriangleright (7 8) + 1
- $(v_1 8) + v_2$

Atomic Formulas

Atomic Formulas

Given a signature Σ .

An atomic formula has either of the forms

- true
- false
- ▶ $t_1 = t_2$ ("equality"), where t_1 and t_2 are first-order terms of the same type.
- ▶ $p(t_1,...,t_n)$ ("predicate"), where $p \in P_{\Sigma}$, and each t_i is term of the correct type, following the typing α_{Σ} of p.

Atomic Formulas over Signature Σ_1

Example formulas over Σ_1 : (assume variable int ν ;)

- ▶ 7 = 8
- **►** <(7, 8)
- \triangleright <(-2 v, 99)
- ightharpoonup < (v, v + 1)

Our variant of FOL allows infix notation for common predicates:

- **▶** 7 < 8
- ▶ -2 v < 99
- \triangleright v < v + 1

First-Order Formulas

Formulas

- each atomic formula is a formula
- with ϕ and ψ formulas, x a variable, and τ a type, the following are also formulas:

```
▶ \neg \phi ("not \phi")

▶ \phi \land \psi ("\phi and \psi")

▶ \phi \lor \psi ("\phi or \psi")

▶ \phi \rightarrow \psi ("\phi implies \psi")

▶ \phi \leftrightarrow \psi ("\phi is equivalent to \psi")
```

▶ $\forall \tau x$; ϕ ("for all x of type τ holds ϕ ")
▶ $\exists \tau x$; ϕ ("there exists an x of type τ such that ϕ ")

In $\forall \tau x$; ϕ and $\exists \tau x$; ϕ the variable x is 'bound' (i.e., 'not free').

Formulas with no free variable are 'closed'.

First-order Formulas: Examples

(signatures/types left out here)

Example (There are at least two elements)

$$\exists x, y; \neg(x = y)$$

Example (Strict partial order)

Irreflexivity
$$\forall x; \neg(x < x)$$

Asymmetry $\forall x; \forall y; (x < y \rightarrow \neg(y < x))$
Transitivity $\forall x; \forall y; \forall z;$
 $(x < y \land y < z \rightarrow x < z)$

(Is any of the three formulas redundant?)

Semantics (briefly here, more thorough later)

Domain

A domain $\mathcal D$ is a set of elements which are (potentially) the *meaning* of terms and variables.

Interpretation

An interpretation \mathcal{I} (over \mathcal{D}) assigns *meaning* to the symbols in $F_{\Sigma} \cup P_{\Sigma}$ (assigning functions to function symbols, relations to predicate symbols).

Valuation

In a given \mathcal{D} and \mathcal{I} , a closed formula evaluates to either \mathcal{T} or \mathcal{F} .

Validity

A closed formula is valid if it evaluates to T in all \mathcal{D} and \mathcal{I} .

In the context of specification/verification of programs: each $(\mathcal{D}, \mathcal{I})$ is called a 'state'.

Useful Valid Formulas

Let ϕ and ψ be arbitrary, closed formulas (whether valid or not).

The following formulas are valid:

- $\blacktriangleright \neg (\phi \land \psi) \leftrightarrow \neg \phi \lor \neg \psi$
- $\rightarrow \neg (\phi \lor \psi) \leftrightarrow \neg \phi \land \neg \psi$
- (true $\wedge \phi$) $\leftrightarrow \phi$
- (false $\lor \phi$) $\leftrightarrow \phi$
- \blacktriangleright true $\lor \phi$
- $ightharpoonup \neg (false \land \phi)$
- $\blacktriangleright (\phi \rightarrow \psi) \leftrightarrow (\neg \phi \lor \psi)$
- $ightharpoonup \phi
 ightarrow true$
- false $\rightarrow \phi$
- (true $\rightarrow \phi$) $\leftrightarrow \phi$
- \bullet ($\phi \rightarrow false$) $\leftrightarrow \neg \phi$

Useful Valid Formulas

Assume that x is the only variable which may appear freely in ϕ or ψ .

The following formulas are valid:

- $ightharpoonup \neg (\exists \ \tau \ x; \ \phi) \leftrightarrow \forall \ \tau \ x; \ \neg \phi$
- $ightharpoonup \neg (\forall \ \tau \ x; \ \phi) \leftrightarrow \exists \ \tau \ x; \ \neg \phi$
- $(\forall \ \tau \ x; \ \phi \land \psi) \leftrightarrow (\forall \ \tau \ x; \ \phi) \land (\forall \ \tau \ x; \ \psi)$
- $(\exists \ \tau \ x; \ \phi \lor \psi) \leftrightarrow (\exists \ \tau \ x; \ \phi) \lor (\exists \ \tau \ x; \ \psi)$

Are the following formulas also valid?

- $(\forall \ \tau \ x; \ \phi \lor \psi) \leftrightarrow (\forall \ \tau \ x; \ \phi) \lor (\forall \ \tau \ x; \ \psi)$
- $(\exists \ \tau \ x; \ \phi \land \psi) \leftrightarrow (\exists \ \tau \ x; \ \phi) \land (\exists \ \tau \ x; \ \psi)$

Remark on Concrete Syntax

	Text book	Spin	KeY
Negation	7	ļ.	!
Conjunction	\wedge	&&	&
Disjunction	\vee		
Implication	\rightarrow , \supset	->	->
Equivalence	\leftrightarrow	<->	<->
Universal Quantifier	$\forall x; \phi$	n/a	\forall τ x; ϕ
Existential Quantifier	∃ <i>x</i> ; <i>φ</i>	n/a	\exists τ x; ϕ
Value equality	=	==	=

Part II

Sequent Calculus for FOL

Motivation for a Sequent Calculus

How to show a formula valid in propositional logic? \rightarrow use a semantic truth table.

How about FOL? Formula: $isEven(x) \lor isOdd(x)$

X	isEven(x)	isOdd(x)	$isEven(x) \lor isOdd(x)$
1	F	T	T
2	<i>T</i>	F	T

Checking validity via semantics does not work.

Instead...

Reasoning by Syntactic Transformation

Prove validity of ϕ by **syntactic** transformation of ϕ

Logic Calculus: Sequent Calculus based on notion of sequent:

$$\underbrace{\psi_1, \dots, \psi_m}_{\text{Antecedent}} \quad \Longrightarrow \quad \underbrace{\phi_1, \dots, \phi_n}_{\text{Succedent}}$$

has same meaning as

$$(\psi_1 \wedge \cdots \wedge \psi_m) \rightarrow (\phi_1 \vee \cdots \vee \phi_n)$$

which has (for closed formulas ψ_i, ϕ_i) same meaning as

$$\{\psi_1,\ldots,\psi_m\} \models \phi_1 \vee \cdots \vee \phi_n$$

Notation for Sequents

$$\psi_1, \ldots, \psi_m \implies \phi_1, \ldots, \phi_n$$

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables

 ϕ,ψ,\dots match formulas, Γ,Δ,\dots match sets of formulas Characterize infinitely many sequents with single schematic sequent, e.g.,

$$\Gamma \implies \phi \wedge \psi, \Delta$$

matches any sequent with occurrence of conjunction in succedent

Here, we call $\phi \wedge \psi$ main formula and Γ, Δ side formulas of sequent

SEFM: First-Order Logic CHALMERS

Sequent Calculus Rules

Write syntactic transformation schema for sequents that reflects semantics of connectives

RuleName
$$\overbrace{ \begin{array}{c} \Gamma_1 \Longrightarrow \Delta_1 & \cdots & \Gamma_r \Longrightarrow \Delta_r \\ \hline \underbrace{\Gamma_2 \Longrightarrow \Delta}_{\text{Conclusion}} \end{array} }^{\text{Premisses}}$$

Meaning: For proving the Conclusion, it suffices to prove all Premisses.

Example

$$\text{andRight} \ \frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \ \land \ \psi, \Delta}$$

Admissible to have no premisses (iff conclusion is valid, e.g., axiom)

A rule is sound (correct) iff the validity of its premisses implies the validity of its conclusion.

'Propositional' Sequent Calculus Rules

clo	se $\overline{\Gamma,\phi \Rightarrow \phi,\Delta}$ true $\overline{\Gamma}=$	$ ightarrow \operatorname{true}, \Delta$ false $\overline{\Gamma, \operatorname{false} \Rightarrow \Delta}$
	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, \neg \phi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow \neg \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \wedge \psi, \Delta}$
or	$\begin{array}{c c} \hline \Gamma, \phi \Longrightarrow \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \lor \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \vee \psi, \Delta}$
imp	$\begin{array}{c c} \Gamma \Longrightarrow \phi, \Delta & \Gamma, \psi \Longrightarrow \Delta \\ \hline \Gamma, \phi \to \psi \Longrightarrow \Delta \end{array}$	$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \to \psi, \Delta}$

Sequent Calculus Proofs

Goal to prove:
$$\mathcal{G} = \psi_1, \ldots, \psi_m \implies \phi_1, \ldots, \phi_n$$

- lacktriangleright find rule ${\mathcal R}$ whose conclusion matches ${\mathcal G}$
- ightharpoonup instantiate $\mathcal R$ such that its conclusion is identical to $\mathcal G$
- ▶ apply that instantiation to all premisses of \mathcal{R} , resulting in new goals $\mathcal{G}_1, \ldots, \mathcal{G}_r$
- recursively find proofs for $\mathcal{G}_1, \ldots, \mathcal{G}_r$
- tree structure with goal as root
- close proof branch when rule without premiss encountered

Goal-directed proof search

In KeY tool proof displayed as JAVA Swing tree

A Simple Proof

CLOSE
$$\frac{*}{p \Rightarrow p, q}$$
 $\frac{*}{p, q \Rightarrow q}$ CLOSE $\frac{p, (p \rightarrow q) \Rightarrow q}{p \land (p \rightarrow q) \Rightarrow q}$ $\Rightarrow (p \land (p \rightarrow q)) \rightarrow q$

A proof is closed iff all its branches are closed

prop.key

Proving a universally quantified formula

Claim: $\forall \tau x$; ϕ is true

How is such a claim proved in mathematics?

All even numbers are divisible by 2 $\forall \text{ int } x$; (even(x) $\rightarrow \text{divByTwo}(x)$)

Let c be an arbitrary number Declare "unused" constant int c

The even number c is divisible by 2 prove $even(c) \rightarrow divByTwo(c)$

Sequent rule ∀-right

forallRight
$$\frac{\Gamma \Longrightarrow [x/c]\,\phi,\Delta}{\Gamma \Longrightarrow \forall\,\tau\,x;\,\phi,\Delta}$$

- $[x/c] \phi$ is result of replacing each occurrence of x in ϕ with c
- ightharpoonup c new constant of type au

Proving an existentially quantified formula

Claim: $\exists \tau x$; ϕ is true

How is such a claim proved in mathematics?

There is at least one prime number $\exists int x$; prime(x)

Provide any "witness", say, 7 Use variable-free term int 7

7 is a prime number prime(7)

Sequent rule ∃-right

existsRight
$$\frac{\Gamma \Longrightarrow [x/t] \phi, \ \exists \tau x; \ \phi, \Delta}{\Gamma \Longrightarrow \exists \tau x; \ \phi, \Delta}$$

- ightharpoonup t any variable-free term of type au
- ▶ Proof might not work with t! Need to keep premise to try again

Using a universally quantified formula

We assume $\forall \tau x$; ϕ is true

How is such a fact used in a mathematical proof?

We know that all primes are odd $\forall \operatorname{int} x$; $(\operatorname{prime}(x) \to \operatorname{odd}(x))$

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd $prime(17) \rightarrow odd(17)$

Sequent rule ∀-left

forallLeft
$$\frac{\Gamma, \forall \tau \, x; \; \phi, \; [x/t'] \, \phi \Longrightarrow \Delta}{\Gamma, \forall \tau \, x; \; \phi \Longrightarrow \Delta}$$

- ightharpoonup t' any variable-free term of type au
- ▶ We might need other instances besides t'! Keep premise $\forall \tau x$; ϕ

Using an existentially quantified formula

We assume $\exists \tau x$; ϕ is true

How is such a fact used in a mathematical proof?

We know such an element exists. Let's give it a new name for future reference.

Sequent rule ∃-left

existsLeft
$$\frac{\Gamma, [x/c] \phi \Longrightarrow \Delta}{\Gamma, \exists \tau x; \phi \Longrightarrow \Delta}$$

• c **new** constant of type au

Using an equation between terms

We assume t = t' is true

How is such a fact used in a mathematical proof?

Use
$$x = y-1$$
 to simplify $x+1/y$ $x = y-1 \Rightarrow 1 = x+1/y$

Replace x in conclusion with right-hand side of equation

We know:
$$x+1/y$$
 equal to $y-1+1/y$ $x=y-1 \Longrightarrow 1=y-1+1/y$

Sequent rule =-left

$$\begin{array}{c} \text{applyEqL} \ \frac{\Gamma,t=t',[t/t']\,\phi \Longrightarrow \Delta}{\Gamma,t=t',\phi \Longrightarrow \Delta} \quad \text{applyEqR} \ \frac{\Gamma,t=t'\Longrightarrow [t/t']\,\phi,\Delta}{\Gamma,t=t'\Longrightarrow \phi,\Delta} \end{array}$$

- ► Always replace left- with right-hand side (use eqSymm if necessary)
- ▶ t,t' variable-free terms of the same type

Closing a subgoal in a proof

▶ We derived a sequent that is obviously valid

close
$$\frac{}{\Gamma, \phi \Rightarrow \phi, \Delta}$$
 true $\frac{}{\Gamma \Rightarrow \mathrm{true}, \Delta}$ false $\frac{}{\Gamma, \mathrm{false} \Rightarrow \Delta}$

▶ We derived an equation that is obviously valid

eqClose
$$T \Longrightarrow t = t, \Delta$$

Sequent Calculus for FOL at One Glance

	left side, antecedent	right side, succedent
\forall	$\frac{\Gamma, \forall \tau x; \phi, [x/t'] \phi \Longrightarrow \Delta}{\Gamma, \forall \tau x; \phi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow [x/c] \phi, \Delta}{\Gamma \Longrightarrow \forall \tau x; \phi, \Delta}$
3	$\frac{\Gamma, [x/c] \phi \Longrightarrow \Delta}{\Gamma, \exists \tau x; \phi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow [x/t'] \phi, \ \exists \tau x; \ \phi, \Delta}{\Gamma \Longrightarrow \exists \tau x; \ \phi, \Delta}$
=	$\frac{\Gamma,t=t'\Longrightarrow [t/t']\phi,\Delta}{\Gamma,t=t'\Longrightarrow\phi,\Delta}$ (+ application rule on left side)	$\overline{\Gamma \Longrightarrow t = t, \Delta}$

- ▶ $[t/t'] \phi$ is result of replacing each occurrence of t in ϕ with t'
- t,t' variable-free terms of type τ
- c **new** constant of type τ (occurs not on current proof branch)
- Equations can be reversed by commutativity

Recap: 'Propositional' Sequent Calculus Rules

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Longrightarrow \phi, \Delta}{\Gamma, \neg \phi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Longrightarrow \Delta}{\Gamma \Longrightarrow \neg \phi, \Delta}$
and	$\frac{\Gamma, \phi, \psi \Longrightarrow \Delta}{\Gamma, \phi \land \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \wedge \psi, \Delta}$
or	$\frac{\Gamma, \phi \Longrightarrow \Delta \qquad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \vee \psi \Longrightarrow \Delta}$	$\frac{\Gamma \Longrightarrow \phi, \psi, \Delta}{\Gamma \Longrightarrow \phi \vee \psi, \Delta}$
imp	$\frac{\Gamma \Longrightarrow \phi, \Delta \qquad \Gamma, \psi \Longrightarrow \Delta}{\Gamma, \phi \to \psi \Longrightarrow \Delta}$	$\frac{\Gamma, \phi \Longrightarrow \psi, \Delta}{\Gamma \Longrightarrow \phi \to \psi, \Delta}$
close		$\frac{1}{1+\operatorname{true},\Delta}$ false $\frac{1}{1+\operatorname{false}}$

Example (A simple theorem about binary relations)

Untyped logic: let static type of x and y be \top \exists -left: substitute new constant c of type \top for x \forall -right: substitute new constant d of type \top for y \forall -left: free to substitute any term of type \top for y, choose d \exists -right: free to substitute any term of type \top for x, choose c Close

36 /

Proving Validity of First-Order Formulas Cont'd

Using an existentially quantified formula

Let x, y denote integer constants, both are not zero. We know further that x divides y.

Show: (y/x) * x = y ('/' is division on integers, i.e., the equation is not always true, e.g. x = 2, y = 1)

Proof: We know x divides y, i.e. there exists a k such that y = k * x. Let now c denote such a k. Hence we can replace y by c * x on the right side. . . .

Features of the KeY Theorem Prover

Demo

rel.key, twoInstances.key

Feature List

- ► Can work on multiple proofs simultaneously (task list)
- Proof trees visualized as JAVA Swing tree
- ▶ Point-and-click navigation within proof
- Undo proof steps, prune proof trees
- Pop-up menu with proof rules applicable in pointer focus
- Preview of rule effect as tool tip
- Quantifier instantiation and equality rules by drag-and-drop
- Possible to hide (and unhide) parts of a sequent
- Saving and loading of proofs

Literature for this Lecture

KeYbook B. Beckert, R. Hähnle, and P. Schmitt, editors, Verification of Object-Oriented Software: The KeY Approach, vol 4334 of LNCS (Lecture Notes in Computer Science), Springer, 2006 (access via Chalmers library → E-books → Lecture Notes in Computer Science)

- ► W. Ahrendt, Using KeY Chapter 10 in [KeYbook]
- ▶ A more up-to-date version: W. Ahrendt, S. Grebing, Using the KeY Prover to appear in the new KeY Book, end 2016 (available via Google group or personal request)

further reading:

► M. Giese, First-Order Logic, Chapter 2 in [KeYbook]

Part III

First-Order Semantics

First-Order Semantics

From propositional to first-order semantics

- ▶ In prop. logic, an interpretation of variables with $\{T, F\}$ sufficed
- ▶ In first-order logic we must assign meaning to:
 - function symbols
 - predicate symbols
 - variables bound in quantifiers
- ▶ Respect typing: int i, List 1 must denote different items

What we need (to interpret a first-order formula)

- 1. A typed domain of items
- 2. A mapping from function symbols to functions on items
- 3. A mapping from predicate symbols to relation on items
- 4. A mapping from variables to items

First-Order Domains

1. A typed domain of items:

Definition (Typed Domain)

A non-empty set \mathcal{D} of items is a domain.

A typing of $\mathcal D$ wrt. signature Σ is a mapping $\delta:\mathcal D\to\mathcal T_\Sigma$

We require from ${\mathcal D}$ and δ that no type is empty:

for each $au \in \mathcal{T}_{\Sigma}$, there is a $d \in \mathcal{D}$ with $\delta(d) = au$

- If $\delta(d) = \tau$, we say d has type τ .
- ▶ $\mathcal{D}^{\tau} = \{d \in \mathcal{D} \mid \delta(d) = \tau\}$ is called subdomain of type τ .
- ▶ It follows that $\mathcal{D}^{\tau} \neq \emptyset$ for each $\tau \in \mathcal{T}_{\Sigma}$.

First-Order States

- 2. A mapping from function symbol to functions on items
- 3. A mapping from predicate symbol to relation on items

Definition (Interpretation, First-Order State)

Let \mathcal{D} be a domain with typing δ .

Let $\mathcal I$ be a mapping, called interpretation, from function and predicate symbols to functions and relations on items, respectively, such that

$$\mathcal{I}(f): \mathcal{D}^{\tau_1} \times \cdots \times \mathcal{D}^{\tau_r} \to \mathcal{D}^{\tau} \quad \text{ when } \alpha_{\Sigma}(f) = (\tau_1, \dots, \tau_r, \tau)$$

 $\mathcal{I}(p) \subseteq \mathcal{D}^{\tau_1} \times \cdots \times \mathcal{D}^{\tau_r} \quad \text{ when } \alpha_{\Sigma}(p) = (\tau_1, \dots, \tau_r)$

Then $S = (\mathcal{D}, \delta, \mathcal{I})$ is a first-order state.

 SEFM: First-Order Logic
 CHALMERS
 160927
 43 / 52

First-Order States Cont'd

Example

Signature: int i; short j; int f(int); Object obj; <(int,int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short

$$\mathcal{I}(i) = 17$$
 $\mathcal{I}(j) = 17$
 $\mathcal{I}(obj) = o$

$$\begin{array}{c|c} \mathcal{D}^{int} & \mathcal{I}(f) \\ \hline 2 & 2 \end{array}$$

$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	in $\mathcal{I}(<)$?
(2,2)	F
(2,17)	T
(17,2)	F
(17, 17)	F

One of uncountably many possible first-order states!

Semantics of Equality

Definition

Interpretation is fixed as $\mathcal{I}(=) = \{(d, d) \mid d \in \mathcal{D}\}$

Exercise: write down the predicate table for example domain

Signature Symbols vs. Domain Elements

- ▶ Domain elements different from the terms representing them
- First-order formulas and terms have no access to domain

Example

```
Signature: Object obj1, obj2; Domain: \mathcal{D} = \{o\}
```

In this state, necessarily $\mathcal{I}(\texttt{obj1}) = \mathcal{I}(\texttt{obj2}) = o$

Variable Assignments

4. A mapping from variables to items

Think of variable assignment as environment for storage of local variables

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements. It respects the variable type, i.e., if x has type τ then $\beta(x) \in \mathcal{D}^{\tau}$

Definition (Modified Variable Assignment)

Let y be variable of type τ , β variable assignment, $d \in \mathcal{D}^{\tau}$:

$$\beta_y^d(x) := \left\{ \begin{array}{ll} \beta(x) & x \neq y \\ d & x = y \end{array} \right.$$

Semantic Evaluation of Terms

Given a first-order state S and a variable assignment β it is possible to evaluate first-order terms under S and β

Definition (Valuation of Terms)

 $val_{\mathcal{S},\beta}$: Term $\to \mathcal{D}$ such that $val_{\mathcal{S},\beta}(t) \in \mathcal{D}^{\tau}$ for $t \in \mathsf{Term}_{\tau}$:

- \triangleright $val_{S,\beta}(x) = \beta(x)$
- \triangleright $val_{S,\beta}(f(t_1,\ldots,t_r)) = \mathcal{I}(f)(val_{S,\beta}(t_1),\ldots,val_{S,\beta}(t_r))$

SEFM: First-Order Logic CHALMERS 160927

Semantic Evaluation of Terms Cont'd

Example

Signature: int i; short j; int f(int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short Variables: Object obj; int x;

$$\mathcal{I}(\mathtt{i}) = 17$$
 $\mathcal{I}(\mathtt{j}) = 17$

$\mathcal{D}^{ ext{int}}$	$\mathcal{I}(\mathtt{f})$
2	17
17	2

Var	β
obj	0
x	17

- val_{S,β}(f(f(i))) ?
- \triangleright $val_{S,\beta}(x)$?

Semantic Evaluation of Formulas

Definition (Valuation of Formulas)

 $val_{S,\beta}(\phi)$ for $\phi \in For$

- $ightharpoonup val_{\mathcal{S},\beta}(p(t_1,\ldots,t_r)) = T$ iff $(val_{\mathcal{S},\beta}(t_1),\ldots,val_{\mathcal{S},\beta}(t_r)) \in \mathcal{I}(p)$
- \triangleright $val_{S,\beta}(\phi \wedge \psi) = T$ iff $val_{S,\beta}(\phi) = T$ and $val_{S,\beta}(\psi) = T$
- $ightharpoonup \neg, \lor, \rightarrow, \leftrightarrow$ as in propositional logic
- $ightharpoonup val_{\mathcal{S}.\mathcal{B}}(orall \ au \ x; \ \phi) = T \quad ext{iff} \quad val_{\mathcal{S}.\mathcal{B}_{\sigma}^d}(\phi) = T \quad ext{for all} \ d \in \mathcal{D}^{\tau}$
- $ightharpoonup val_{\mathcal{S},\beta}(\exists \, au \, x; \, \phi) = T \quad \text{iff} \quad val_{\mathcal{S},\beta,d}(\phi) = T \text{ for at least one } d \in \mathcal{D}^{\tau}$

SEFM: First-Order Logic CHALMERS 160927 50 / 52

Semantic Evaluation of Formulas Cont'd

Example

Signature: short j; int f(int); Object obj; <(int,int); $\mathcal{D} = \{17, 2, o\}$ where all numbers are short

$$\mathcal{I}(j) = 17$$

$$\mathcal{I}(\texttt{obj}) = o$$

$$\boxed{\begin{array}{c|c} \mathcal{D}^{\textbf{int}} & \mathcal{I}(f) \\ \hline 2 & 2 \\ \hline 17 & 2 \\ \hline \end{array}}$$

$\mathcal{D}^{ ext{int}} imes \mathcal{D}^{ ext{int}}$	in $\mathcal{I}(<)$?
(2,2)	F
(2,17)	T
(17, 2)	F
(17, 17)	F

- ▶ $val_{S,\beta}(f(j) < j)$?
- $ightharpoonup val_{S,\beta}(\exists \operatorname{int} x; f(x) = x) ?$
- ▶ $val_{S,\beta}(\forall \text{ Object } o1; \forall \text{ Object } o2; o1 = o2)$?

Semantic Notions

Definition (Satisfiability, Truth, Validity)

$$val_{\mathcal{S},\beta}(\phi) = T$$
 $(\phi \text{ is satisfiable})$
 $\mathcal{S} \models \phi$ iff for all $\beta : val_{\mathcal{S},\beta}(\phi) = T$ $(\phi \text{ is true in } \mathcal{S})$
 $\models \phi$ iff for all $\mathcal{S} : \mathcal{S} \models \phi$ $(\phi \text{ is valid})$

Closed formulas that are satisfiable are also true: one top-level notion

Example

- ▶ f(j) < j is true in S
- ▶ $\exists \text{ int } x$; i = x is valid
- ▶ $\exists \text{ int } x$; $\neg(x = x)$ is not satisfiable