
TDA251/DIT280, Period 2, 2016: Algorithms

Advanced Course.

Exam Problems.

Instructions

(i) Motivate all your answers.

(ii) An answer, even a correct one, without motivation does not count. On the other
hand, answer concisely and to the point, without digressions.

(iii) Avoid wordy essays. Extensive writing does not necessarily add to clarity, but it can
make it harder to retrieve the relevant statements and logical steps.

(iv) Submit your answers via the FIRE system as PDF attachment strictly before the
given deadline: Jan. 14, kl 20:00.

(v) Make sure there is your name and id printed on every page and solution to every
porblem starts on a new page.

(vi) Make a first submission as soon as possible. Later, you can upload a revised version
by clicking on withdraw for the previous one in the FIRE. You can repeat it any
number of times. Only the last one will be considered.

(vii) If you have any problems to stick to the deadline for an important reason, inform us
in good time, in order to avoid failure.

(viii) You must do the exam completely on your own. Neither group work nor external
help is permitted.

(ix) Used literature beyond the course material must be cited.

(x) Questions may be directed to azams@chalmers.se only. (However, no solution hints
will be given. Only questions about the interpretation of the exam problems will be
answered.)

(xi) Utmost academic honesty is expected. Cheating can lead to failure on the entire
course and further consequences.

1

Problem 1

An influential French scholar in the 18th century proposed a funny randomized algorithm
to approximate the number π ≈ 3.14 without complicated calculations. It works as follows.
Draw several parallel lines on the floor, such that any two consecutive lines have distance
2L. Throw a stick of length L on the floor. Do this n times and count how often the stick
hits a line. Let k denote the number of hits.

One can prove that the probability to hit a line is 1/π. Hence n/k should be close to
π. One may be wondering how efficient and accurate this method is. It turns out that
one gets only a few decimals of π in reasonable time, however these are correct with high
confidence. In detail:

(a) It should be pretty obvious that, for any fixed number n, the expected value of k/n is
1/π. Explain why this is true.

(b) Now let us fix k instead, and repeat the experiment until k hits are observed. Let n be
the (random) number of trials needed. Show that the expected value of n/k is π. – But
be careful: This does not follow from (a) by using E[1/X] = 1/E[X] for some random
variable X. In fact, this equation is, in general, plainly wrong! What is the correct
reason for the claimed expected value π? Note the slightly different assumptions in (a)
and (b).

(c) Despite (b), let us work with the inverse value and approximate 1/π. Let d ≥ 0 be a
fixed integer. Give an upper bound for the probability that k/n > 1/π, and fewer than
d decimals of k/n are correct. (In other words, at most the first d− 1 digits after the
decimal point are equal to those of 1/pi). Use the Chernoff bound e−δ

2µ/3, for relative
error δ and expectation µ, as provided in the lecture notes. (Here we do not consider
the other case k/n < 1/π which is similar.)

(d) Say why it was correct to use the Chernoff bound in (c).

(e) Suppose that you want to keep a fixed error probability but get one further decimal
(d+ 1 rather than d). How much do you have to increase n? Explain.

(f) Suppose that you are satisfied with d decimals but you want to make the error proba-
bility smaller. How does the error probability behave as a function of n?

Remark: These are a lot of questions, but each one can be answered in one or two lines.

Problem 2

An important and fundamental problem in streaming is the following. Suppose the stream
consists of m elements each of which is an integer between 1 and n. Here we assume that

2

n is known but the stream can be arbitrarily long. We would like to estimate the number
of distinct numbers in the stream. For instance if the stream is 1, 1, 10, 2, 2, 2, 1, 1,
10 the answer should be 3. Of course we can do this by maintaining n counters but this
would require a huge amount of space. Here we outline a simple idea for this problem. Let
the stream of numbers be a1, a2, · · · , am. We want to estimate d, the number of distinct
numbers in the stream. Use a random hash function h : 1, 2, ..., n → [0, 1] and keep track
of Z = min{h(a1), h(a2), ..., h(am)} which is only one number to store.

(a) Compute the expectation of Z.

(b) Use this to describe an unbiased estimator for d.

Problem 3

The prefekt of the Chalmers CSE Department has a headache: he needs to form m admin-
istrative committees with committee i requiring at lest ki members who need to be selected
from amongst the n professors in the department. However, each professor j is only willing
to serve in a selected subset of committees Sj where they think they have something useful
to contribute and they have a limit of sj different committees they could be part of given
their time restrictions. Give a polynomial time algorithm to help the prefekt decide if there
is a way to form such committees and if so how. State the running time of your algorithm.

Problem 4

Let’s say we need to remove elements from a Bloom filter B with |B| = b bits (recall,
it is not a Bloom filter if the hashes are not uniform). For a deletion of item x we set
the {h1(x), . . . , hk(x)} bits to zero (note, we assume, as in the lecture, that the hi(x) are
pair-wise distinct). Deletions could obviously cause false negatives. The question is, how
much of a problem is this?

(a) What is the probability that no false negatives caused by the deletion of one element,
assuming that there are n+ 1 elements in the Bloom filter before the deletion?

(b) What is the probability of d false negatives caused by the deletion of one element,
assuming that there are n+ d elements in the bloom filter before the deletion?

(c) What is the expected number of items affected by one deletion?

(d) What is the expected number of false negatives caused by d deletions if there are n+d
elements in the bloom filter before the deletions? You might need to make further
simplifying assumptions, or invoke a more complicated probability argument.

3

Problem 5

The space requirement of prefix trees depends greatly on the tree implementation. Recall,
that in a prefix tree every node can have at most |Σ| many descendants, one outgoing edge
per character in the alphabet. The actual number of descendants will however very much
depend on the depth of a node in the tree. Clearly, the root is likely to have all possible
descendants, while nodes deeper in the tree might only have a few.

Assume that the only prefix tree implementation available to you implements a doubly-
linked list in each node to store pointers to descendants and uses four 32-bit words (three
pointers—previous, next, descendant—and one number for the character) per descendant
and two 32 bit numbers for the first and last pointer.

Alternatively, one can store the pointer to descendants in an array, using a prefix as the
index into the array. E.g., the root node could be replaced by an array of pointers indexed
by the first character of the prefix which requires |Σ| 32-bit words space.

The two approaches can be combined to form a “prefix forest” where an array with
|Σ|k entries is used to store pointers to descendants (or null, if no such descendant exists)
of all possible k-character prefixes in lexicographic order. A proper choice of k can reduce
the memory footprint.

(a) Propose a criterion for choosing an optimal k given a prefix tree as input.

(b) Propose an algorithm for choosing an optimal k and converting a prefix tree to a prefix
forest.

4

