
Advanced Algorithms 2011. Exam Questions

This take-home exam consists of a number of summarizing test questions on
different levels.

Important: Motivate all your answers. An answer, even a correct one,
without motivation does not count. (It could be just a lucky guess.)
On the other hand, each of the questions can be answered very briefly, in a
few lines. Fully worked-out details are not expected. Write precisely to the
point, without digressions.

Submission: Mail your answers to ptr@chalmers.se as plain text or PDF
attachment strictly before the given deadline. Do not wait until the last
minute! You may revise your submission arbitrarily often until the deadline,
and only the last version is considered. Asking questions or revising your
solutions does not count negatively. If you have any problems to stick to the
deadline for an important reason, inform us in good time, in order to avoid
failure.

Help: You must do the exam completely on your own. Neither group work
nor external help is permitted. Used literature beyond the course material
must be cited. Questions may be directed to the teachers only. Utmost
academic honesty is expected. Cheating can lead to failure on the entire
course and further consequences.

1



1. The hand-in exercise 1 addressed an algorithm for Load Balancing with
an approximation ratio that gets arbitrarily close to 1. Is this a fully
polynomial-time approximation scheme? Why, or why not?

2. Given is a set of points in the plane. Each point is colored with one
of k colors. We wish to select k points, one of each color, such that the
perimeter of the convex hull of the selected points is as small as possible.
(The perimeter is the length of a belt laid tightly around the point set.)
We propose the following algorithm: Fix some point p in the given set. For
each color c, choose a point of color c that is closest to p. Do this (from
scratch) for every point p, and eventually take the solution with minimum
perimeter. We claim that this algorithm guarantees an approximation ratio
at most π = 3.14159 . . . Why is this true?

3. Consider the following algorithm for the unweighted Vertex Cover prob-
lem: Initially S := ∅ and M := ∅. Take an edge e that is disjoint to all edges
that are already in M , and add e to M . Add the two end nodes of e to S.
Repeat this step as long as possible.
Show that the final S is a vertex cover.

4. Show that the resulting S (in question 3) is at most twice as large as a
minimum vertex cover.

5. Obviously, the edge set M (in question 3) is a matching. Is M always a
matching of maximum size?

6. In the Weighted Hitting Set problem we are given a set A of n elements,
each with a weight wi, and a collection of m subsets Bj ⊂ A. A hitting set
is a subset of A that intersects every Bj . We wish to determine a hitting
set with minimum total weight. Show that a solution with a weight at most
H(m) times the optimum can be computed in polynomial time, through a
simple reduction to Set Cover. It is enough to say how the reduction works.

2



7. The max-cut problem in graphs asks to find a partition of the node set
in two parts such that as many as possible edges exist between these parts.
“The max-cut problem can be reduced in polynomial time to min-cut, simply
by replacing every edge of the given graph with a non-edge and vice versa.
This turns the maximization into a minimization problem.” True or not?

8. Bulb fiction: You want to test n light bulbs. In order to save time, you
group them into k sets of m bulbs (n = km) and test each group in series
connection: If some bulb in the group is defective, you get no light. Only if
all bulbs in the group work properly, light is on. Assume that the bulbs are
defective independently, each with the same probability p. What can you
expect to observe?

9. Back to the max-cut problem: Show that the node set of every graph
with m edges can be partitioned in two parts such that at least m/2 edges
exist between these parts. More specifically, give a randomized algorithm
that yields a cut with an expected number of m/2 edges.

10. Does your randomized algorithm for max-cut (in question 9) find a cut
with at least m/2 edges in expected polynomial time?

11. Given a directed graph with m directed edges, we want to arrange the
nodes in a linear order, such that as many as possible of the directed edges go
from left to right. More formally, we want to name the nodes by v1, . . . , vn

such that i < j holds for as many as possible of the directed edges vivj .
Show that there exists a solution where at least m/2 edges get the desired
orientation. (You may be tempted to use the probabilistic method again,
however, this time there is also a trivial way ...)

12. Nice to know that an algorithm like Quicksort runs in O(n log n) ex-
pected time. It would be even nicer to know that large deviations from this
expected time are unlikely. Can we use the powerful tool of Chernoff bounds
to prove that? Why, or why not?

13. The 3-coloring problem asks to assign 3 colors to the nodes of a given
graph, such that adjacent nodes always get different colors (or figure out
that no such coloring is possible). The problem can be trivially solved in
O(3n) time. With a little more thinking one can solve it in O(2n) time.
How?

3



14. How much better is O(2n) time compared to O(3n) time? More precisely
asked: Suppose you have a fixed time budget, where the O(3n) algorithm
can solve instances with, say, N nodes. How large are the instances that
the O(2n) algorithm can manage? (For simplicity you may assume that the
time complexities are exactly 2n and 3n, neglecting polynomial factors.)

15. Let a graph G and an integer parameter k be given. Let c be the size
of a minimum vertex cover in G. Devise an algorithm with the following
properties:

• If c ≤ k, it outputs a minimum vertex cover in O∗(1.47k) time.

• If k < c ≤ 2k, it reports after O∗(1.47k) time that no vertex cover of
size k exists.

• If 2k < c, it reports already after polynomial time that no vertex cover
of size k exists.

(Note carefully that c is not known in the beginning, hence you cannot
simply use c as another input parameter.)

16. Consider any problem that is NP-complete but FPT, such as Vertex
Cover (to be specific). You are offered a polynomial-time algorithm that
takes input (G, k), where G is a graph with more than k nodes, and outputs
a graph G′ with the following properties: G′ is strictly smaller than G, and
some vertex cover of size k in G (if existing) is also a vertex cover of G′.
(Note the resemblance to kernelization.) Would you buy it? That is, would
you believe that this algorithm works?

4


