
Advanced Algorithms 2014. Exam Answers

1. Already the case m = 2 and p = 0 is NP-complete: We can reduce
the original Load Balancing problem to Load Balancing with Preemptions.
Namely, a Load Balancing instance t1, . . . , tn with m = 2 allows a makespan∑n
j=1 tj/2 if and only if the same sequence allows a solution to Load Bal-

ancing with Preemptions where p = 0.
(The “overall” NP-completeness does not exclude polynomial-time solutions
for other special cases, achieved in various ways.)

2. Idea: One has to compare the greedy and optimal solution. An immediate
observation is that the greedy algorithm can, in each step, add at least
the size of some set from the optimal solution, minus the already covered
elements. Full elaboration (not expected) could work as follows:
Consider any optimal solution P ∪ Q that covers c := |P ∪ Q| elements.
Clearly, |P | ≥ c/2 or |Q| ≥ c/2. Since X is the largest set, it follows
instantly |X| ≥ c/2. We cannot know in general where P,Q,X are located.
So let us define s := |(P ∪Q)∩X|. Then c−s elements of P ∪Q are not in X.
Similarly as above, P or Q has at least (c−s)/2 of these elements outside X.
Since Y has the largest difference to X, the second step adds at least (c−s)/2
elements to the solution. In total we get |X∪Y | ≥ max(s, c/2)+(c−s)/2 =
max((c+ s)/2, c− s/2). The worst case is (c+ s)/2 = c− s/2, thus s = c/2,
and |X ∪ Y | ≥ 3c/4.

3. The probability not to hit Sj with one random element is (1 − k/n).
Due to independence, the probability to miss Sj all r times is (1− k/n)r ≈
exp(−kr/n). We set exp(−kr/n) = ε. Simple algebra gives r = ln(1/ε)·n/k.
(This simplification is only a proposal. The result can also be expressed more
precisely.)
Since we cannot know how many sets Sj have large intersections with S,
we assume the worst case m. By the union bound, the failure probability
is now at most m exp(−kr/n) = ε. The same calculation as before yields
r = ln(m/ε) · n/k.

4. Let X denote the number of votes for A. By linearity of expectation we
have µ := E[X] = k(1− p) + (n− k)p < n/2. The wrong candidate wins if
X > n/2. So the question is basically: How likely is a large deviation from
the expected value? This immediately suggests the use of Chernoff bounds.
In fact, they are applicable, since X is a sum of independent 0, 1-valued
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random variables. (So, yes, independence is essential here). The Chernoff
bound decreases exponentially in n.
In more technical detail (not expected):
Using a = k/n we can also write µ = (a(1 − p) + (1 − a)p) · n. Our δ is
n/(2µ)− 1. The Chernoff bound from class has the form bµ, where the base
b < 1 only depends on δ which, in turn, only depends on a and p. Thus, for
fixed a and p, the base is constant, and µ is linear in n. Hence the failure
probability decreases exponentially in n.

5. The scheme is very similar to the “fast” FPT algorithm for Vertex Cover,
only some problem-specific details are different. In one branch we put c
(thus, 1 element) in the solution. If we don’t, we must put one of a, b and one
of d, e in the solution. These are 4 options, each selecting 2 elements. This
yields the claimed recurrence. If no branching is possible, we are in some
polynomial-time case (as claimed in the exercise). For solving the recurrence
we set T (k) = xk and divide the equation by xk−2. The quadratic equation
x2 = x+ 4 yields x < 2.57, thus a time bound of O∗(2.57k).

6. A greedy approach: Make the tree directed, by declaring an arbitrary
node the root. Now consider an optimal solution I, Let v be any leaf. If
neither v nor its siblings are in I, we go upwards until we meet the first node
u ∈ I. Replacing u with v in I does not increase |I|. Also the distance from
v to other nodes in I remains larger than 2. Thus it is safe to put v in I.
This reasoning shows the correctness of the following algorithm: Put a leaf
in I, remove this leaf, all its siblings, its parent and grandparent. Iterate
until the tree is empty.
(A dynamic programming alternative is not shown here.)
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