
Advanced Algorithms.

Probability and Randomized Algorithms

Continued

3-SAT: How to Satisfy Most Clauses

The Satisfiability problem (SAT) asks to assign truth values to the variables

in a boolean formula so as to make the formula true. Specifically, the formula

is given as a conjunction of clauses, where each clause is a disjunction of

literals, i.e., unnegated or negated boolean variables. SAT appears directly

in many real problem settings where logical variables have to satisfy certain

constraints. In 3-SAT, every clause has 3 literals. 3-SAT is a classical

NP-complete problem. MAX 3-SAT is the following natural relaxation of

3-SAT: If the formula is not satisfiable, find an assignment of truth values

that satisfies as many clauses as possible. By an obvious reduction from

3-SAT we see that MAX 3-SAT is also NP-complete.

On the other hand, if any conjunction of k clauses with exactly 3 literals

is given, we can easily find an assignment that satisfies most of the clauses,

namely 0.875k in expectation. An extremely simple randomized algorithm

will do: Assign truth values 0 or 1, each with probability 1/2, to all variables

independently. The analysis is very simple, too: Every clause is satisfied

with probability 7/8, hence, by linearity of expectation, an expected number

of 7/8 of all clauses is satisfied.

We can conclude more from this result: Since an expected number of 7/8

of all clauses is satisfied, there must always exist some truth value assignment

that actually satisfies at least 7/8 of the clauses. This easily follows from a

general argument: Consider the random variable X indicating the number

of satisfied clauses. The expected value E[X] is the average value of X,

weighted by the probabilities of values. Hence any random variable X can

take on some value greater than or equal to E[X].

1

This reasoning is the famous Probabilistic Method: When we look for a

certain combinatorial structure (here: a truth assignment satisfying many

clauses), we may apply some simple randomized algorithm and show that

the desired structure is produced with some positive probability. Hence this

structure must exist. Of course, the approach does not work for any such

problem (due to lack of a simple randomized algorithm), and it proves only

the existence of the thing we are looking for, but it does not say how we can

find it efficiently. These questions must be studied for any specific search

problem at hand.

In the case of MAX 3-SAT, how difficult is it to actually find an assign-

ment that satisfies at least 7/8 of the clauses? The obvious idea is to iterate

the above algorithm until success. We analyze the expected number of iter-

ations needed. Let pj be the probability that exactly j clauses are satisfied.

Since the expected value of j is 7k/8, we have the following equality, where

the sum is already split in two cases:

7k/8 =
∑
j

jpj =
∑

j<7k/8

jpj +
∑

j≥7k/8
jpj .

As an abbreviation define p :=
∑
j≥7k/8 pj , and let k′ be the largest integer

with k′ < 7k/8. We upperbound the sum generously and obtain

7k/8 ≤
∑

j<7k/8

k′pj +
∑

j≥7k/8
kpj = k′(1− p) + kp ≤ k′ + kp.

Thus we have kp ≥ 7k/8− k′, which is at least 1/8 due to the definition of

k′. Thus, a random assignment succeeds with probability p ≥ 1/8k, and the

expected waiting time for success is at most 8k iterations.

Note that this is a Las Vegas algorithm. Furthermore, note that it

does not solve the actual MAX 3-SAT problem. It guarantees only 0.875k

satisfied clauses in every input. But what if, for example, 0.95k clauses are

satisfiable ...? In fact, it has been shown that, for any small ε > 0, it is

already NP-complete to decide whether a MAX 3-SAT instance allows to

satisfy (0.875 + ε)k clauses. In this sense, running the simple randomized

algorithm is already the best one can do in general.

Hashing

(This part may be skipped if you know hashing already very well from Data

Structure courses. But make sure that you also understand the probability

theory behind it.)

2

Let be U a universe (a huge set) of elements. A dictionary is a data

structure that keeps track of a set S ⊂ U and supports the following op-

erations: insert, delete, lookup. That is, a dictionary enables us to quickly

insert elements into a set, delete elements from a set, or retrieve elements of

the set. Hash tables are among the most well known implementations of dic-

tionaries. In the following, n is always some fixed size bound much smaller

than |U |. A hash table H is an array of size n, with indices 0, . . . , n − 1,

where n ≥ |S|. That is, H allocates enough space for storing sets S of at

most n elements. However, several elements may be stored in the same entry

of H, for example as a list. Then we speak of collisions.

A hash function h maps U onto this index set. In order to execute any

of the dictionary operations for an element, we compute the index of that

element and access the corresponding entry of H. Of course, h must be

easily computable, and it is essential that our hash function keeps collisions

to a minimum: If many elements are stored in the same entry, we still

have to search for the desired element there, and this would slow down the

dictionary operation. Since U is much larger than n, collisions cannot be

avoided, but with a good randomized approach we can keep their expected

number small. In the following, note again that randomness is only in the

algorithm (here: in the design of our hash function h), but we do not make

any assumptions on the set S we want to store, other than |S| ≤ n.

Here is a classical simple hashing scheme, along with a rigorous analysis

of its performance. We will choose h at random from a certain class of easily

computable functions. We call a function class “universal” if for any pair

u, v ∈ U the probability of h(u) = h(v) is at most 1/n. This is a good

property for hashing because, if we pick a random h from a universal class

then, for any fixed element u, the expected number of other elements s ∈ S
with h(s) = h(u) is at most 1, and we barely get large bags of elements in

the same entry of H. Thus our dictionary will be able to do any operation

in O(1) expected time.

But do such universal classes of functions exist? Trivially, the class of

all functions from U into the index set has this property. But what would

it mean to choose a random h from the class of all functions? Since the

values of such h are random and independent, h has “no structure”, and we

can “compute” the values of h for given elements only by looking them up,

in a table of size |U |, which is against the very idea of hashing. We need

a restricted class of functions which are easily computable but still “shake

3

well” the elements of any subset with at most n elements. One construction

comes from elementary number theory.

We choose a prime number p slightly larger than our n. (Prime numbers

are “dense enough” in the set of integers, we will always find such p. We do

not go into details of this preprocessing step.) We represent the elements of

U as vectors x = (x1, . . . , xr) with 0 ≤ xi < p for all i. The dimensionality

we need is clearly r ≈ log |U |/ log p. (This may look complicated, but note

that these vectors can be seen as arbitrary “names” of the elements.) For

every a = (a1, . . . , ar) we define a hash function ha(x) = (
∑r
i=1 aixi) mod p.

For any given x ∈ U these values are really easy to compute. It remains

to analyze the collisions. We will see that the class of all functions ha is

universal. Very little help from number theory is needed: If p is a prime and

z 6= 0 mod p, then az = bz mod p implies a = b mod p for any two numbers

a, b. (The proof is straightforward.)

Using this fact we show, for any two x, y ∈ U , that ha(x) = ha(y)

happens with probability at most 1/p. (Recall where this probability comes

from: We took some random a.) Since x 6= y, their vectors must differ

somewhere. Hence, let j be some position where xj 6= yj . A nice trick

makes the probability calculation extremely simple: Instead of considering

a random a, we fix all ai, i 6= j, and choose only aj randomly, where 0 ≤
aj < p. Then the probability result applies also to a random vector a.

(Why?) By the construction of ha, a collision ha(x) = ha(y) appears if and

only if aj(yj − xj) =
∑
i 6=j ai(xi − yi) mod p. Since we have fixed the right-

hand side, we can treat it as a constant, say m. Now define z := yj − xj .
Due to the above number-theoretic fact, there exists exactly one aj with

ajz = m mod p. Hence the probability of collision is 1/p ≤ 1/n, and our

hash table can execute dictionary operations in O(1) expected time.

A final remark: There is often confusion about the time complexity of

hash table operations. O(1) is the expected number of arithmetic operations.

But the bit complexity is not constant, it grows logarithmically in the size

of the sets we want to deal with. Thus, hash tables are asymptotically not

faster than other dictionary implementations such as balanced search trees.

The real advantage of hash tables is elsewhere: They are easy to implement

(just evaluation of some simple functions) and use only arithmetic, which

is physically faster than manipulations with pointers, etc., that would be

needed to implement trees.

4

Closest Points

For the problem of finding a closest pair of n points in the plane there

exists a divide-and-conquer algorithm running in O(n log n) time. It follows

a simple idea but is a bit complicated when it comes to the implementation

details. Here we show a Las Vegas algorithm that is not only simpler but

also solves the problem already in O(n) expected time plus O(n) dictionary

operations.

We can always assume that our n points are in a unit square. In our

algorithm we maintain a real number d which is the smallest distance be-

tween two points known so far. We consider the n points in random order.

For every new point p we test whether p has distance smaller than d to

some earlier point, and in this case we update d. For an efficient test we

have to avoid computing the distances to all earlier points. Therefore we

divide the unit square into squares of side length d/2. Since d is the smallest

distance, at most one earlier point can be located in each square. Moreover,

those points which might have a distance smaller than d to p are in squares

close to the square containing p, more precisely, they are in a 5 × 5 grid of

squares. Thus we have to test at most 25 candidates in every step. Hence

O(n) computations are enough, for all n points. So far we have not even

used the fact that points are processed in random order.

However, some complications begin here: We need to know which points

are in the candidate squares! For this purpose we may use a hash table, with

an entry for every point. But whenever d is diminshed, our partitioning into

squares of side length d/2 changes totally, and we have to create a new

hash table from scratch. How often do we have to insert our points into

the various hash tables? Only here the randomized order of points becomes

important.

Let X be a random variable for the total number of insertions. Let Xi

be another random variable, with Xi = 1 if the ith point causes an update,

and Xi = 0 else. Clearly, X = n +
∑
i iXi. The key fact is that Xi = 1

with probability at most 2/i: For each i, the first i points are randomly

ordered as well, hence, the event that some of the two points in a closest

pair is the ith point has probability 2/i. Linearity of expectation gives

E[X] = n +
∑
i iE[Xi] ≤ 3n. Thus, the expected number of dictionary

operations is O(n), and each of them needs O(1) expected time. From

these two facts it follows that the total expected time is O(n). Stop! The

latter conclusion seems obvious at first glance. But referring to linearity of

5

expectation is not enough here, since the number of random variables to

be added is a random variable itself. A real proof needs a careful analysis

of conditional expectations, since we combine here two different sources of

randomness. – However we omit this technical part of the proof. We only

wanted to stress the efficiency and elegance of a randomized approach.

Chernoff Bounds

This is a very useful general tool to bound the probabilities that certain

random variables deviate much from their expected values. Here we will

derive one version of this bound and then apply it to a simple load balancing

problem. (You do not need the proof when you apply the bound, but why

not see it once? It is pretty nice and elegant.)

Let X be sum of n independent 0-1 valued random variables Xi taking

value 1 with probability pi. Clearly E[X] =
∑
i pi. For any µ ≥ E[X] and

δ > 0 we ask how likely it is that X > (1 + δ)µ, in other words, that X

exceeds the expected value by more than 100δ percent.

Since function exp is monotone, this inequality is equivalent to exp(tX) >

exp(t(1+δ)µ) for any t > 0. Exponentiation and this free extra parameter t

seem to make things more complicated, but we will see very soon why they

are useful.

For any random variable Y and any number γ > 0 we have E[Y] ≥
γPr(Y > γ). This is known as Markov’s inequality and follows directly

from the definition of E[Y]. For Y := exp(tX) and γ = exp(t(1 + δ)µ) this

yields Pr(X > (1 + δ)µ) ≤ exp(−t(1 + δ)µ)E[exp(tX)].

Due to independence of the terms Xi we have:

E[exp(tX)] = E[exp(
∑
i tXi)] = E[

∏
i exp(tXi)] =

∏
iE[exp(tXi)] =∏

i(pie
t + 1− pi) =

∏
i(1 + pi(e

t − 1)) ≤
∏
i exp(pi(e

t − 1))

= exp((et − 1)
∑
i pi) ≤ exp((et − 1)µ).

This gives us the bound exp(−t(1+δ)µ) exp((et−1)µ). We can arbitrarily

choose t. With t := ln(1 + δ) our bound reads as
(

eδ

(1+δ)(1+δ)

)µ
.

The base depending on δ looks a bit complicated, however: Using eδ ≈
1 + δ one can see that the base is smaller than 1. For any fixed deviation δ

the base is constant, and the bound decreases exponentially in µ. The more

independent summands Xi we have in X, the smaller is the probability of

large deviations. A direct application of the simple Markov inequality would

be much weaker (therefore the detour via the exponential function).

6

For small δ one can use the Taylor expansion eδ = 1+δ+. . . and simplify

the bound to e−δ
2µ/3, which is a more common form of a Chernoff bound,

and nicer to use in most applications. (The detailed calculations are omitted

here.)

In order to show at least one application, consider the following simple

load balancing problem: m jobs shall be assigned to n processors, in such a

way that no processor gets a high load. In contrast to the Load Balancing

problem we studied earlier, no central “authority” assigns jobs to processors,

but every job chooses a processor by itself. We want to install a simple

rule yet obtain a well balanced allocation. (An application is distributed

processing of independent tasks in networks.) To make the rule as light-

weight as possible, let us choose for every job a processor randomly and

independently. The jobs need not even “talk” to each other and negotiate

places. How good is this policy?

We analyze only the case m = n. What would you guess: How man

jobs end up on the same processor? To achieve clarity, consider the random

variable Xi defined as the number of jobs assigned to processor i. Clearly

E[Xi] = 1. The quantity we are interested in is Pr(Xi > c), for a given

bound c. Since Xi is a sum of independent 0-1 valued random variables

(every job chooses processor i or not), we can apply the Chernoff bound.

With δ = c− 1 and µ = 1 we get immediately the bound ec−1/cc < (e/c)c.

But this is only the probability bound for one processor. To bound the

probability that Xi > c holds for some of the n processors, we can apply the

union bound and multiply the above probability with n. Now we ask: For

which c will n(e/c)c be “small”?

At least, we must choose c large enough to make cc > n. As an auxiliary

calculation consider the equation xx = n. For such x we can say (1) x log x =

log n and (2) log x + log log x = log log n, we have just taken the logarithm

twice. Equation (2) easily implies log x < log log n < 2 log x. Division by

(1) yields 1/x < log log n/ log n < 2/x. In other words, xx = n holds for

some x = Θ(log n/ log log n).

Thus, if we choose c := ex, our Chernoff bound for every single proces-

sor simplifies to 1/xex < 1/(xx)2 = 1/n2. What this shows is that, with

probability 1 − 1/n, each processor gets O(log n/ log logn) jobs. This an-

swers our question: Under random assignments, the maximum load can be

logarithmic, but it is unlikely to be worse.

For m = Θ(n log n) or more jobs, the random load balancing becomes

7

really good. Then the load is larger than twice the expected value Θ(log n)

only with probability below 1/n2. Calculations are similar as above.

To see another (however very technical) example of the use of Chernoff

bounds in computer science, it is recommended to have a look at the fol-

lowing article, where the sum of a huge set of numbers is approximately

computed from a random sample.

B. Fu, W. Li, Z. Peng: Sublinear Time Approximate Sum via Uniform Ran-

dom Sampling. Computing and Combinatorics, 19th International Confer-

ence, COCOON 2013, Lecture Notes in Computer Science (Springer), vol.

7936, pp. 713–720.

8

