
Advanced Algorithms.

Approximation Algorithms Continued

In this part of the course we will see that hard optimization problems

behave very differently when it comes to approximation. In some problems,

optimal solutions are even hard to approximate, while in other problems we

can get arbitrarily close to the optimum in polynomial time.

Disjoint Paths and Routing

Given a directed graph with m edges, and k node pairs (si, ti), we wish to

find directed paths from si to ti for a maximum number of indices i. These

paths shall not share any edges. We also call such paths edge-disjoint.

This is a fundamental problem for routing in networks. Imagine that

we want to send goods, information, etc., from source nodes to destina-

tion nodes along available directed paths, without unreasonable congestion.

In general we cannot send everything simultaneously, but we may try and

maximize the number of served requests.

The problem is NP-complete (which we do not prove here), but we

present an algorithm with approximation ratio O(
√
m). The square root

function does not grow fast, hence this result is not too bad. Yet the guaran-

teed quality of the solution deteriorates with growing network size. However

O(
√
m) is the best possible guarantee one can achieve in polynomial time,

and still better than no guarantee at all.

As many other approximation algorithms, this one is a simple and obvi-

ous greedy algorithm. The intuitive idea is that short paths should minimize

the chances of conflicts with other paths, and shortest paths can be com-

puted efficiently.

Therefore, the proposed algorithm just chooses a shortest path that con-

nects some yet unconnected pair and adds it to the solution, and it iterates

1

this procedure as long as possible. After every iteration we delete the edges

of the path used, in order to avoid collisions with paths chosen later.

However, the idea is not as powerful as one might hope: In each step

there could exist many short paths to choose from, and we may easily miss

a good one, since we only consider the length as selection criterion. But at

least we can prove the O(
√
m) ratio, as follows.

Let I∗ and I denote the set of indices i of the pairs (si, ti) connected

by the optimal and the greedy solution, respectively. Let P ∗i and Pi denote

the selected paths for index i. The analysis works with case a distinction

regarding the length: We call a path with at least
√
m edges long, and other

paths are called short. Let I∗s and Is be the set of indices i of the pairs

(si, ti) connected by the short paths in I∗ and I, respectively.

Since only m edges exist, I∗ can have at most
√
m long paths. Consider

any index i where P ∗i is short, but (si, ti) is not even connected in I. (This is

the worst that can happen to a pair, hence our worst-case analysis focusses

on this case.) The reason why the greedy algorithm has not chosen P ∗i must

be that some edge e ∈ P ∗i is already in some Pj chosen earlier. We say that

e “blocks” P ∗i . We have |Pj | ≤ |P ∗i | ≤
√
m. Every edge in Pj can block

at most one path of I∗. Hence Pj blocks at most
√
m paths of I∗. The

number of such bad indices i is therefore bounded by |I∗s \ I| ≤ |Is|
√
m.

Finally some simple steps prove the claimed approximation ratio: |I∗| ≤
|I∗ \ I∗s |+ |I|+ |I∗s \ I| ≤

√
m+ |I|+ |Is|

√
m ≤ (2

√
m+ 1)|I|.

An Approximation Scheme for Knapsack

So far we have seen examples of approximation algorithms whose approxi-

mation ratios on every instance are fixed, either as an absolute constant or

depending on the input size. But often we may be willing to spend more

computation time to get a better solution, i.e., closer to the optimum. In

other words, we may trade time for quality.

A polynomial-time approximation scheme (PTAS) is an algorithm where

the user can freely decide on some accuracy parameter ε and get a solution

within a factor 1+ε of optimum, and within a time bound that is polynomial

for every fixed ε (but grows as ε decreases). The actual choice of ε may then

depend on the demands and resources. A nice example is the following

Knapsack algorithm.

In the Knapsack problem, a knapsack of capacity W is given, as well as

n items with weights wi and values vi (all integer). The problem is to find

2

a subset S of items with
∑

i∈S wi ≤W (so that S fits in the knapsack) and

maximum value
∑

i∈S vi. Define v∗ := max vi.

You may already know that Knapsack is NP-complete but can be solved

by some dynamic programming algorithm. Its time bound O(nW) is poly-

nomial in the numerical value W , but not in the input size n, therefore

we call it pseudo-polynomial. (A truly polynomial algorithm for an NP-

complete problem cannot exist, unless P=NP.) However, for our approxima-

tion scheme we need another dynamic programming algorithm that differs

from the most natural one. The reasons will become clear later on. Here it

comes:

Define OPT (i, V) to be the minimum (necessary) capacity of a knapsack

that contains a subset of the first i items, of total value at least V . We can

compute OPT (i, V) using the OPT values for smaller arguments, as follows.

If V >
∑i−1

j=1 vj then, obviously, we must add item i to reach V . Thus we

have OPT (i, V) = wi +OPT (i−1, V −vi) in this case. If V ≤
∑i−1

j=1 vj then

item i may be added or not, leading to

OPT (i, V) = min(OPT (i− 1, V), wi +OPT (i− 1,max(V − vi, 0))).

(Think a while, to see the correctness.) Since i ≤ n and V ≤ nv∗, the time

is bounded by O(n2v∗). As usual in dynamic programming, backtracing can

reconstruct an actual solution from the OPT values.

Now the idea of the approximation scheme is: If v∗ is small, we can

afford an optimal solution, as the time bound is small. If v∗ is large, we

round the values to multiples of some number b and solve the given instance

only approximately. The point is that we can divide all the rounded values

by the common factor b without changing the solution sets, which gives

us again a small problem instance. In the following we work out this idea

precisely. We do not specify what “small” and large” means, instead, some

free parameter b (integer) controls the problem size.

First we compute new values v′i as follows: Divide vi by the fixed b

and round up to the next integer: v′i = dvi/be. Then run the dynamic

programming algorithm for the new values v′i rather than vi.

Let us compare the solution S found by this algorithm, and the optimal

solution S∗. Since we have not changed the weights of elements, S∗ still fits

in the knapsack. Since S is optimal for the new values, clearly∑
i∈S

v′i ≥
∑
i∈S∗

v′i.

3

Now one can easily see:∑
i∈S∗

vi/b ≤
∑
i∈S∗

v′i ≤
∑
i∈S

v′i ≤
∑
i∈S

(vi/b+ 1) ≤ n+
∑
i∈S

vi/b.

This shows ∑
i∈S∗

vi ≤ nb+
∑
i∈S

vi.

In words, the optimal total value is larger than the achieved value by at

most an additional amount nb. By chosing b := εv∗/n, the above inequality

becomes ∑
i∈S∗

vi ≤ εv∗ +
∑
i∈S

vi.

Since trivially
∑

i∈S∗ vi ≥ v∗, this becomes∑
i∈S∗

vi ≤ ε
∑
i∈S∗

vi +
∑
i∈S

vi.

Hence we get the final result

(1− ε)
∑
i∈S∗

vi ≤
∑
i∈S

vi.

In words: We achieve at least a 1−ε fraction of the optimal value. The time

is O(n2v∗/b) = O(n3/ε). Thus we can compute a solution with at least 1− ε
times the optimum value in O(n3/ε) time.

For any fixed accuracy ε this time bound is polynomial in n (not only

pseudo-polynomial as the exact dynamic programming algorithm). How-

ever, the smaller ε we want, the more time we have to invest.

The presented approximation scheme is even an FPTAS, which is stronger

than a PTAS. Here is the definition: A fully polynomial-time approximation

scheme (FPTAS) is an algorithm that takes an additional input parameter

ε and computes a solution that has at least 1 − ε times the optimum value

(for a maximization problem), or at most 1+ε times the optimum value (for

a minimization problem), and runs in a time that is polynomial in n and

1/ε.

Optional: If you have time and want to elaborate more on this theme,

it is highly recommended to study the following paper (the title says what

it is about). And if you are scared off by the details, maybe you can at least

4

grasp the problem, the additional difficulty, and the new ideas towards its

solution.

Zhou Xu, Xiaofan Lai: A Fully Polynomial Approximation Scheme for a

Knapsack Problem with a Minimum Filling Constraint. Algorithms and

Data Structures – 12th International Symposium, WADS 2011, Lecture

Notes in Computer Science 6844, pp. 704 ff.

Using Linear Programming for Approximation Algorithms

A linear program (LP) is the following task: Given a matrix A and vectors

b, c, compute a vector x ≥ 0 with Ax ≥ b that minimizes the inner product

cTx. This is succinctly written as: min cTx s.t. x ≥ 0, Ax ≥ b.
The entries of all matrices and vectors are real numbers. LPs can be

solved efficiently (theoretically in polynomial time). However, algorithms

for solving LPs are not a subject of this course. LP solvers are implemented

in several software packages. Here we use them only as a “black box” to

solve hard problems approximately.

A simple example of this technique is again Weighted Vertex Cover in a

graph G = (V,E). The problem can be reformulated as min
∑

i∈V wixi s.t.

xi + xj ≥ 1 for all edges (i, j). This is almost an LP, but the catch is that

the xi must be 1 or 0 (indicating that node i is in the vertex cover or not),

whereas the variables in an LP are real numbers. Hence we cannot use an

LP solver directly. (Weighted Vertex Cover is NP-complete after all ...)

Instead we solve a so-called LP relaxation of the given problem and then

construct a solution of the actual problem “close to” the LP solution. If

this works well, we should get a good approximation. In our case, a possible

LP relaxation is to allow real numbers xi ∈ [0, 1]. Let S∗ be a minimum

weight vertex cover, and wLP be the total weight of an optimal solution

to the LP relaxation. Clearly wLP ≤ w(S∗). Let x∗i denote the value of

variable xi in the optimal solution to the LP relaxation. These numbers

are in general fractional. To get rid of these fractional numbers we do the

most obvious thing: we round them! More precisely: Let S be set of nodes

i with x∗i ≥ 1/2. Variables corresponding to nodes in S are rounded to 1,

others are rounded to 0. The set S is obviously a vertex cover. Moreover,

wLP ≤ w(S∗) implies w(S) ≤ 2w(S∗), since by the rounding we have at

most doubled the values of variables from the LP relaxation. This gives

us yet another algorithm with approximation ratio 2. – We know already

5

simpler 2-approximation algorithms for Weighted Vertex Cover, but this was

only an example to demonstrate the general technique of LP relaxation and

rounding.

Reductions and Approximability

The class of optimization problems where a solution within a constant factor

of optimum can be obtained in polynomial time is denoted APX (“approx-

imable”). There exist problems in APX that do not have a PTAS (unless

P=NP). They are called APX-hard problems. Such results are shown by

reductions, in analogy to NP-hardness results. But beware: A polynomial-

time reduction from one problem to another one does in general not im-

ply anything about their approximability. Reductions that establish APX-

hardness must also preserve the solution sizes within constant factors. Here

we do not develop the whole theory but we illustrate this type of reductions

by an example.

A dominating set in a graph is a subset D of nodes such that every node

is in D or has at least one neighbor in D. The Dominating Set problem asks

to find a dominating set with a minimum number of nodes, in a given graph

with n nodes. A minimum dominating set can be approximated within

a factor O(log n) of the optimum size, by a reduction to Set Cover that

preserves the solution sizes. (This is a pretty straightforward exercise.) Now

a natural question is whether we can approximate dominating sets better,

in some other way.

The answer is negative, due to the following reduction from Set Cover

to Dominating Set. Consider any instance of Set Cover problem, on a set U

of size n, and with subsets Si ⊂ U with unit weights. Let I denote the set

of all indices i. We construct a graph G = (V,E) with node set V = I ∪ U .

We insert all possible edges in I. Furthermore we insert all edges between

i ∈ I and u ∈ U where u ∈ Si. Now we prove that the size of a minimum set

cover equals the size of a minimum dominiating set in G. Note that every

set cover of size k corresponds to a subset of I which is also a dominating

set of size k. Conversely, let D be any dominating set of size k in G. If D

contains some u ∈ U , we can replace it with some adjacent node i ∈ I. This

yields a set of size at most k which is still dominating. This way we get rid

of all nodes in D ∩ U and finally obtain a dominating set no larger than k,

which is entirely in I. Such a dominating set corresponds to a set cover of

size at most k. Together this implies equality.

6

This polynomial-time and size-preserving reduction shows the following:

If we could approximate Dominating Set with a factor better than O(log n),

then we could also do so for Set Cover, which is believed to be impossible.

Hence our Dominating Set approximation is already as good as it can be.

Summarizing Remarks about Approximation Algorithms

Most of the practically relevant optimization problems are NP-complete,

nevertheless solutions are needed. We call an algorithm an approximation

algorithm if it runs in polynomial time and gives a solution close to optimum.

The approximation ratio is the ratio of the values of the output and of

an optimal solution, minimized or maximized (depending on what type of

problem we have) over all instances. It can be analyzed by relating “simple”

upper and lower bounds on the values of solutions. Some approaches to the

design of approximation algorithms are: greedy rules, solving dual problems

(pricing methods), and LP relaxation followed by rounding, and there are

many more techniques.

All NP-complete decision problems are “equally hard” subject to poly-

nomial factors in their time complexities, but they can behave very differ-

ently as optimization problems. Even different optimization criteria for the

same problem can lead to different complexities. Some problems are approx-

imable within a constant factor, or within a factor that mildly grows with

some input parameters, and some can be solved with arbitrary accuracy in

polynomial time. In the latter case we speak of polynomial-time approxima-

tion schemes. One should also notice that the proved approximation ratios

are only worst-case results. The quality of solutions to specific instances is

often much better. On the other hand, there exist problems for which we

cannot even find any good approximation in polynomial time. One example

is finding maximum cliques in graphs. However, such “hardness of approx-

imation” results require much deeper proof methods than in the theory of

NP-completeness.

If you encounter a problem and wonder how well it might be solvable

approximately: There is material on the Web, e.g., “A compendium of NP

optimization problems” edited by Crescenzi and Kann.

7

