Sample solutions for the examination of Models of Computation (DIT310/TDA183/TDA184) from 2017-04-11

Nils Anders Danielsson

- 1. (a) $Bool \rightarrow Bool$ is countable, $\mathbb{N} \rightarrow Bool$ is not countable.
 - (b) $Bool \to \mathbb{N}$ is countable, because it is in bijective correspondence with $\mathbb{N} \times \mathbb{N}$, which is countable.
- 2. rec x = f x.
- 3. No. We can prove this by reducing the halting problem (which is not χ -decidable) to f.

If f is χ -decidable, then there is a closed χ expression <u>f</u> witnessing the computability of f. We can use this expression to construct a closed χ expression <u>halts</u> (written using a mixture of concrete syntax and meta-level notation):

<u>halts</u> = $\lambda p. f \lceil \lambda _. (\lambda _. \lceil 0 \rceil), p \rceil$

This expression witnesses the decidability of the halting problem. Note that, for any closed expression $e \in Exp$,

 $\begin{array}{c} \llbracket \underline{halts} \ulcorner e \urcorner \rrbracket &= \\ \llbracket \underline{f} \ulcorner \lambda _. (\lambda _. \ulcorner 0 \urcorner) e \urcorner \rrbracket &= \\ \ulcorner \mathbf{if} \llbracket (\lambda _. (\lambda _. \ulcorner 0 \urcorner) e) \ulcorner 7 \urcorner \rrbracket = \ulcorner 0 \urcorner \mathbf{then true else false} \urcorner = \\ \ulcorner \mathbf{if} \llbracket (\lambda _. \ulcorner 0 \urcorner) e \rrbracket = \ulcorner 0 \urcorner \mathbf{then true else false} \urcorner. \end{array}$

We have two cases to consider:

- If e is a closed χ expression that terminates with a value, then $[(\lambda_{-}, \ 0 \) e] = \ 0 \$, and thus $[\underline{halts} \ e \]] = \ true \$.
- If e is a closed χ expression that does not terminate with a value, then [(λ_.. ^Γ0[¬]) e]] ≠ ^Γ0[¬], and thus [[halts ^Γe[¬]]] = ^Γfalse[¬].
- 4. Yes. This function is constantly false, because the expression apply $e \lceil 7 \rceil$ is not equal to $\lceil 0 \rceil$ (which has const as its head constructor), no matter what *e* is. Thus the χ -decidability of the function is witnessed by the χ program λ_{-} . False().

- 5. (a) If the machine is run with 110 as the input string, then the following configurations are encountered:
 - $(s_0, [], [1, 1, 0]).$
 - $(s_2, [\underline{1}], [1, 0]).$
 - $(s_2, [1, \underline{1}], [0]).$
 - $(s_3, [1, 1, \underline{1}], []).$
 - $(s_4, [1, \underline{1}], [1, 0]).$
 - $(s_4, [\underline{1}], [1, 1, 0]).$
 - $(s_4, [], [\underline{1}, 1, 1, 0]).$
 - $(s_5, [], [1, 1, 1, 0]).$

The last configuration above is a halting one, with the head over the leftmost square, so the resulting string is 1110.

- (b) No. If the input is $0 \in \mathbb{N}$, i.e. the string 0, then the machine terminates successfully with the string 1, which does not correspond to a natural number.
- 6. The following lemma (where PRF_n^- is the variant of PRF_n obtained by removing rec) implies that *is-zero* is not computable, because $0 \le 1$ but *is-zero* $0 = 1 \le 0 = is$ -zero 1:

Lemma. For any $n \in \mathbb{N}$, $f \in PRF_n^-$, and $\rho_1, \rho_2 \in \mathbb{N}^n$, we have that if $\rho_1 \leq \rho_2$, then $\llbracket f \rrbracket \ \rho_1 \leq \llbracket f \rrbracket \ \rho_2$. Similarly, for any $m, n \in \mathbb{N}$, $fs \in (PRF_m^-)^n$, and $\rho_1, \rho_2 \in \mathbb{N}^m$, we have that if $\rho_1 \leq \rho_2$, then $\llbracket fs \rrbracket^* \ \rho_1 \leq \llbracket fs \rrbracket^* \ \rho_2$.

Proof. Let us prove the two statements simultaneously, using induction on the structure of f and fs. There are four cases for the first statement:

- zero: $[\![\operatorname{zero}]\!] \rho_1 = 0 \le 0 = [\![\operatorname{zero}]\!] \rho_2.$
- suc: In this case $\rho_1 = \operatorname{nil}, n_1$ and $\rho_2 = \operatorname{nil}, n_2$ for some $n_1, n_2 \in \mathbb{N}$ with $n_1 \leq n_2$. We get that $[\operatorname{suc}] \rho_1 = 1 + n_1 \leq 1 + n_2 = [\operatorname{suc}] \rho_2$.
- proj i: $\llbracket \text{proj } i \rrbracket \rho_1 = index \ \rho_1 \ i \leq index \ \rho_2 \ i = \llbracket \text{proj } i \rrbracket \rho_2.$
- comp f gs: Note first that, by one inductive hypothesis, $[gs]^* \rho_1 \leq [gs]^* \rho_2$. Another inductive hypothesis lets us conclude that

$$\begin{split} \llbracket \operatorname{comp} f \ gs \rrbracket \ \rho_1 &= \llbracket f \rrbracket \ (\llbracket gs \rrbracket^\star \ \rho_1) \\ &\leq \llbracket f \rrbracket \ (\llbracket gs \rrbracket^\star \ \rho_2) = \llbracket \operatorname{comp} f \ gs \rrbracket \ \rho_2. \end{split}$$

Finally there are two cases for the second statement:

- nil: $\llbracket \operatorname{nil} \rrbracket^* \rho_1 = \operatorname{nil} \le \operatorname{nil} = \llbracket \operatorname{nil} \rrbracket^* \rho_2.$
- fs, f: Two separate inductive hypotheses let us conclude that