Sample solutions for the examination of Models of Computation (DIT310/TDA183/TDA184) from 2017-04-11

Nils Anders Danielsson

1. (a) Bool \rightarrow Bool is countable, $\mathbb{N} \rightarrow$ Bool is not countable.
(b) Bool $\rightarrow \mathbb{N}$ is countable, because it is in bijective correspondence with $\mathbb{N} \times \mathbb{N}$, which is countable.
2. $\mathbf{r e c} x=f x$.
3. No. We can prove this by reducing the halting problem (which is not χ-decidable) to f.
If f is χ-decidable, then there is a closed χ expression \underline{f} witnessing the computability of f. We can use this expression to construct a closed χ expression halts (written using a mixture of concrete syntax and meta-level notation):

$$
\underline{\text { halts }}=\lambda p \cdot \underline{f}\left\ulcorner\lambda_{-} \cdot\left(\lambda_{-}\left\ulcorner 0^{\urcorner}\right)\right)_{\llcorner } p\right\lrcorner
$$

This expression witnesses the decidability of the halting problem. Note that, for any closed expression $e \in \operatorname{Exp}$,

$$
\begin{aligned}
& \text { 【halts } \left.{ }^{\ulcorner } e\right\urcorner \rrbracket= \\
& \llbracket f^{\ulcorner } \lambda_{-} \cdot\left(\lambda_{-}{ }^{\ulcorner } 0^{\urcorner}\right) e e^{\urcorner} \rrbracket= \\
& \left\ulcorner\text { if } \llbracket\left(\lambda_{-} .\left(\lambda_{-}\ulcorner 0\urcorner\right) e\right)\ulcorner 7\urcorner \rrbracket=\ulcorner 0\urcorner \text { then true else false }{ }^{\urcorner}=\right. \\
& \left\ulcorner\text { if } \llbracket \left(\lambda_{-}\left\ulcorner 0^{\urcorner}\right) e \rrbracket=\ulcorner 0\urcorner \text { then true else false }{ }^{\urcorner}\right.\right. \text {. }
\end{aligned}
$$

We have two cases to consider:

- If e is a closed χ expression that terminates with a value, then $\llbracket\left(\lambda_{-}\ulcorner 0\urcorner\right) e \rrbracket=\ulcorner 0\urcorner$, and thus \llbracket halts $\ulcorner e\urcorner \rrbracket=\ulcorner$ true \urcorner.
- If e is a closed χ expression that does not terminate with a value, then $\llbracket\left(\lambda_{-}\left\ulcorner 0^{\urcorner}\right) e \rrbracket \neq\ulcorner 0\urcorner\right.$, and thus \llbracket halts $\ulcorner e\urcorner \rrbracket=\ulcorner$ false \urcorner.

4. Yes. This function is constantly false, because the expression apply $e^{\ulcorner } 7^{\urcorner}$ is not equal to ${ }^{\ulcorner } 0{ }^{\urcorner}$(which has const as its head constructor), no matter what e is. Thus the χ-decidability of the function is witnessed by the χ program $\lambda_{\text {_ }}$. False().
5. (a) If the machine is run with 110 as the input string, then the following configurations are encountered:

- $\left(s_{0},[],[1,1,0]\right)$.
- $\left(s_{2},[\underline{1}],[1,0]\right)$.
- $\left(s_{2},[1, \underline{1}],[0]\right)$.
- $\left(s_{3},[1,1, \underline{1}],[]\right)$.
- $\left(s_{4},[1, \underline{1}],[1,0]\right)$.
- $\left(s_{4},[\underline{1}],[1,1,0]\right)$.
- $\left(s_{4},[],[\underline{1}, 1,1,0]\right)$.
- $\left(s_{5},[],[1,1,1,0]\right)$.

The last configuration above is a halting one, with the head over the leftmost square, so the resulting string is 1110 .
(b) No. If the input is $0 \in \mathbb{N}$, i.e. the string 0 , then the machine terminates successfully with the string 1 , which does not correspond to a natural number.
6. The following lemma (where $P R F_{n}^{-}$is the variant of $P R F_{n}$ obtained by removing rec) implies that is-zero is not computable, because $0 \leq 1$ but is-zero $0=1 \not \leq 0=$ is-zero 1 :

Lemma. For any $n \in \mathbb{N}, f \in P R F_{n}^{-}$, and $\rho_{1}, \rho_{2} \in \mathbb{N}^{n}$, we have that if $\rho_{1} \leq \rho_{2}$, then $\llbracket f \rrbracket \rho_{1} \leq \llbracket f \rrbracket \rho_{2}$. Similarly, for any $m, n \in \mathbb{N}$, $f s \in\left(P R F_{m}^{-}\right)^{n}$, and $\rho_{1}, \rho_{2} \in \mathbb{N}^{m}$, we have that if $\rho_{1} \leq \rho_{2}$, then $\llbracket f s \rrbracket^{\star} \rho_{1} \leq \llbracket f s \rrbracket^{\star} \rho_{2}$.

Proof. Let us prove the two statements simultaneously, using induction on the structure of f and $f s$. There are four cases for the first statement:

- zero: \llbracket zero $\rrbracket \rho_{1}=0 \leq 0=\llbracket$ zero $\rrbracket \rho_{2}$.
- suc: In this case $\rho_{1}=$ nil, n_{1} and $\rho_{2}=$ nil, n_{2} for some $n_{1}, n_{2} \in \mathbb{N}$ with $n_{1} \leq n_{2}$. We get that \llbracket suc $\rrbracket \rho_{1}=1+n_{1} \leq 1+n_{2}=\llbracket$ suc $\rrbracket \rho_{2}$.
- proj i : $\llbracket \operatorname{proj} i \rrbracket \rho_{1}=$ index $\rho_{1} i \leq$ index $\rho_{2} i=\llbracket \operatorname{proj} i \rrbracket \rho_{2}$.
- comp $f g s$: Note first that, by one inductive hypothesis, $\llbracket g s \rrbracket^{\star} \rho_{1} \leq$ $\llbracket g s \rrbracket^{\star} \rho_{2}$. Another inductive hypothesis lets us conclude that

$$
\begin{aligned}
\llbracket \operatorname{comp} f g s \rrbracket \rho_{1} & =\llbracket f \rrbracket\left(\llbracket g s \rrbracket^{\star} \rho_{1}\right) \\
& \leq \llbracket f \rrbracket\left(\llbracket g s \rrbracket^{\star} \rho_{2}\right)=\llbracket \operatorname{comp} f g s \rrbracket \rho_{2} .
\end{aligned}
$$

Finally there are two cases for the second statement:

- nil: \llbracket nil $\rrbracket^{\star} \rho_{1}=$ nil \leq nil $=\llbracket n i l \rrbracket^{\star} \rho_{2}$.
- $f s, f$: Two separate inductive hypotheses let us conclude that

$$
\begin{aligned}
\llbracket f s, f \rrbracket^{\star} \rho_{1} & =\llbracket f s \rrbracket^{\star} \rho_{1}, \llbracket f \rrbracket \rho_{1} \\
& \leq \llbracket f s \rrbracket^{\star} \rho_{2}, \llbracket f \rrbracket \rho_{2}=\llbracket f s, f \rrbracket^{\star} \rho_{2} .
\end{aligned}
$$

