
Sample solutions for the examination of
Models of Computation

(DIT310/TDA183/TDA184)
from 2017-01-10

Nils Anders Danielsson

1. (a) Bool → Bool is countable, ℕ → ℕ is not countable.
(b) The given set—let us denote it by A—consists of 𝜒-computable func-

tions. For every such function there is at least one 𝜒 expression that
witnesses its computability, and no expression is a witness for two
different functions. The set of all 𝜒 expressions is countable, and
thus A is also countable.
In more detail: The set Exp consisting of (the abstract syntax of) ev-
ery 𝜒 expression is countable, i.e. there is an injection f ∈ Exp → ℕ.
If we can construct an injection from A to Exp, then we are done,
because the composition of two injections is also injective. We can
construct a function g ∈ A → Exp in the following way: for a 𝜒-
computable function h ∈ ℕ → ℕ, g h is one of the 𝜒 expressions that
witnesses the computability of h (the one for which the injective func-
tion f returns the smallest number). To see that the function g is
injective, consider two functions h1, h2 ∈ A for which g h1 = g h2 = e,
where e witnesses the computability of both h1 and h2. We get that,
for all n ∈ ℕ, ⌜ h1 n ⌝ = ⟦e ⌜n ⌝⟧ = ⌜ h2 n ⌝. The function ⌜ ⌝ is injec-
tive, so we get that, for all n ∈ ℕ, h1 n = h2 n, and thus h1 and h2
are equal.

2. Lambda(Zero(),Apply(Var(Zero()),Var(Zero()))).
3. Yes. If f and g are both 𝜒-computable, then there are closed 𝜒 expres-

sions ef and eg witnessing the computability of f and g , respectively. For
any variable x the closed expression lambda x (apply eg (apply ef (var x )))
witnesses the computability of g ∘ f , because for any n ∈ ℕ we have

⟦apply (lambda x (apply eg (apply ef (var x )))) ⌜n ⌝⟧ =
⟦apply eg (apply ef ⌜n ⌝)⟧ =
⟦apply eg ⌜ f n ⌝⟧ =
⌜ g (f n) ⌝ =
⌜ (g ∘ f ) n ⌝.

1



4. No. We can prove this by reducing the halting problem (which is not
𝜒-computable) to f .
If f is 𝜒-computable, then there is a closed 𝜒 expression f witnessing the
computability of f . We can use this expression to construct a closed 𝜒
expression halts:1

halts = 𝜆p. f Apply(Lambda(Zero(), ⌜ ⌜ 35 ⌝ ⌝), p)

(For brevity halts is expressed using a mixture of concrete syntax and
meta-level notation.) This expression witnesses the computability of the
halting problem. Note that, for any closed expression e ∈ Exp,

⟦halts ⌜ e ⌝⟧ =
⟦f Apply(Lambda(Zero(), ⌜ ⌜ 35 ⌝ ⌝), ⌜ e ⌝)⟧ =
⟦f ⌜ (𝜆x . ⌜ 35 ⌝) e ⌝⟧ =
⌜ if ⟦(𝜆x . ⌜ 35 ⌝) e ⟧ = ⌜ 35 ⌝ then true else false ⌝

(for some variable x ). We have two cases to consider:

• If e is a closed 𝜒 expression that terminates with a value, then
⟦(𝜆x . ⌜ 35 ⌝) e ⟧ = ⌜ 35 ⌝, and thus ⟦halts ⌜ e ⌝⟧ = ⌜ true ⌝.

• If e is a closed 𝜒 expression that does not terminate with a value,
then ⟦(𝜆x . ⌜ 35 ⌝) e ⟧ ≠ ⌜ 35 ⌝, and thus ⟦halts ⌜ e ⌝⟧ = ⌜ false ⌝.

5. (a) If the machine is run with 000 as the input string, then the following
configurations are encountered:

• (s0, [ ], [0, 0, 0]).
• (s1, [□], [0, 0]).
• (s2, [␣, □], [0]).
• (s3, [␣, ␣, □], [ ]).
• (s1, [␣, □], [␣, ␣]).
• (s2, [□], [␣, ␣, ␣]).
• (s3, [ ], [□, ␣, ␣, ␣]).

The last configuration above is a halting one, with the head over the
leftmost square, so the resulting string is □.

(b) No. If the machine is run with 00 as the input string, then the
following configurations are initially encountered:

• (s0, [ ], [0, 0]).
• (s1, [□], [0]).
• (s2, [␣, □], [ ]).
• (s3, [□], [␣, ␣]).

1In the first version of this document there was an error in the following expression (I
used Var(p) instead of p at the end of the expression). I realised this while correcting exams.
Thanks to all the students who got this right.

2



• (s1, [ ], [□, ␣, ␣]).
• (s4, [ ], [␣, ␣, ␣]).

Every subsequent transition goes from the last configuration above
to the same configuration, so the machine does not halt.

6. The operational semantics is extended with the following two inference
rules (where CExp𝜒 is a set consisting of the abstract syntax of every
closed expression from the unmodified language 𝜒, and ⇓𝜒 refers to
the unmodified semantics):

e′, v ∈ CExp𝜒 e ⇓ ⌜ e′ ⌝ e′ ⇓𝜒 v

halts e ⇓ ⌜ true ⌝

e′ ∈ CExp𝜒 e ⇓ ⌜ e′ ⌝ ∀v ∈ CExp𝜒. ¬ (e′ ⇓𝜒 v)
halts e ⇓ ⌜ false ⌝

Properties:

• The expression halts can be taken to be lambda e (halts (var e)) (for
some variable e). This expression is closed. Note that, for any closed
𝜒 expression e, ⌜ e ⌝ ⇓ ⌜ e ⌝, because ⌜ e ⌝ is a value. Thus

⟦apply halts ⌜ e ⌝⟧ = ⟦halts ⌜ e ⌝⟧.

Furthermore, if e is a closed 𝜒 expression that terminates with a
value (according to ⇓𝜒 ), then, by the first inference rule above,

⟦halts ⌜ e ⌝⟧ = ⌜ true ⌝

(again using the fact that ⌜ e ⌝ ⇓ ⌜ e ⌝.) Similarly, if e is a closed 𝜒
expression that does not terminate with a value (according to ⇓𝜒 ),
then, by the second inference rule above,

⟦halts ⌜ e ⌝⟧ = ⌜ false ⌝.

• Given that the semantics is still deterministic, the proof (sketch)
given in the lectures showing that the halting problem for 𝜒 is not
𝜒-decidable can be used almost unchanged to show that the halting
problem for 𝜒 is not 𝜒-decidable.

3


