Lecture
 Models of Computation (DIT310, TDA184)

Nils Anders Danielsson

2016-12-12

Today

- Repetition. Please interrupt if you want to discuss something in more detail.
- Course evaluation.

Models of computation

- Actual hardware or programming languages: Lots of (irrelevant?) details.
- In this course: Idealised models of computation.
- PRF, RF.
- X.
- Turing machines.

The Church-Turing thesis

- The thesis:

Every effectively calculable function on the positive integers can be computed using a Turing machine.

- Widely believed to be true.
- Many models are Turing-complete.

Comparing sets' sizes

- Injections, surjections, bijections.
- Countable (injection to \mathbb{N}), uncountable.
- Diagonalisation.
- Not every function is computable.

Inductively defined sets

An inductively defined set:

Primitive recursion:
listrec $\in B \rightarrow(A \rightarrow$ List $A \rightarrow B \rightarrow B) \rightarrow$

$$
\text { List } A \rightarrow B
$$

listrec $n c$ nil $=n$
listrec $n c($ cons $x x s)=c x$ xs (listrec $n c x s)$

Inductively defined sets

An inductively defined set:

$$
\frac{x \in A \quad x s \in \text { List } A}{\text { cons } x x s \in \text { List } A}
$$

Structural induction (P : a predicate on List A):

$$
\begin{aligned}
& P \text { nil } \\
& \forall x \in A . \forall x s \in \text { List A. } P x s \Rightarrow P(\operatorname{cons} x x s) \\
& \forall x s \in \text { List A. P xs }
\end{aligned}
$$

Quiz

Write down the type of one of the higher-order primitive recursion schemes for the following inductively defined set:

$$
\frac{n \in \mathbb{N}}{\text { leaf } n \in \text { Treee }}
$$

$\frac{l, r \in \text { Tree }}{\text { node } l r \in \text { Tree }}$

PR

Sketch:

$$
\begin{aligned}
& f()=\text { zero } \\
& f(x)=\operatorname{suc} x \\
& f\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)=x_{k} \\
& f\left(x_{1}, \ldots, x_{n}\right)=g\left(h_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, h_{k}\left(x_{1}, \ldots, x_{n}\right)\right) \\
& f\left(x_{1}, \ldots, x_{n}, \text { zero }\right)=g\left(x_{1}, \ldots, x_{n}\right) \\
& f\left(x_{1}, \ldots, x_{n}, \text { sud } x\right)= \\
& \quad h\left(x_{1}, \ldots, x_{n}, f\left(x_{1}, \ldots, x_{n}, x\right), x\right)
\end{aligned}
$$

PRF

- Abstract syntax $\left(P R F_{n}\right)$.
- Denotational semantics:

$$
\llbracket-\rrbracket \in P R F_{n} \rightarrow\left(\mathbb{N}^{n} \rightarrow \mathbb{N}\right)
$$

- Big-step operational semantics:

$$
f[\rho] \Downarrow n
$$

PRF

- Strictly weaker than χ /Turing machines.
- Some χ-computable total functions are not PRF-computable.
- This is the case for any model of computation where all programs "terminate", given certain assumptions.

Not exactly the χ-computable functions

Assumptions:

- Programs: Prog.
- Total, χ-computable semantics:

$$
\llbracket-\rrbracket \in \operatorname{Prog} \times \mathbb{N} \rightarrow \mathbb{N}
$$

- A coding function:

$$
\text { code } \in \operatorname{Prog} \rightarrow \mathbb{N}
$$

- A χ-computable left inverse of code:

$$
\text { decode } \in \mathbb{N} \rightarrow \text { Prog }
$$

Not exactly the χ-computable functions

- Define $g \in \mathbb{N} \rightarrow \mathbb{N}$ by

$$
g n=\llbracket(\operatorname{decode} n, n) \rrbracket+1 .
$$

Note that g is total and χ-computable.

- Assume that $\underline{g} \in \operatorname{Prog}$, with

$$
\forall n \in \mathbb{N} . \llbracket(\underline{g}, n) \rrbracket=g n .
$$

- We get a contradiction:

$$
\begin{array}{ll}
g(\operatorname{code} \underline{g}) & = \\
\llbracket(\operatorname{decode}(\operatorname{code} \underline{g}), \operatorname{code} \underline{g}) \rrbracket+1= \\
\llbracket(g, \operatorname{code} \underline{g}) \rrbracket+1 \\
g(\operatorname{code} \underline{g})+1 & = \\
\end{array}
$$

RF

- PRF + minimisation.
- For $f \in \mathbb{N} \rightharpoonup \mathbb{N}$:
f is RF-computable \Leftrightarrow
f is χ-computable \Leftrightarrow
f is Turing-computable.

X

$e::=x$

$$
\begin{aligned}
& \left(e_{1} e_{2}\right) \\
& \lambda x . e \\
& \mathrm{C}\left(e_{1}, \ldots, e_{n}\right) \\
& \operatorname{case} e \text { of }\left\{\mathrm{C}_{1}\left(x_{1}, \ldots, x_{n}\right) \rightarrow e_{1} ; \ldots\right\} \\
& \operatorname{rec} x=e
\end{aligned}
$$

- Untyped, strict.
$\rightarrow \operatorname{rec} x=e \approx \operatorname{let} x=e$ in x.

X

- Abstract syntax.
- Substitution of closed expressions.
- Big-step operational semantics, not total.
- The semantics as a partial function:

$$
\llbracket-\rrbracket \in C E x p \rightharpoonup C E x p
$$

- Representing inductively defined sets.

Representing expressions

Coding function:

$$
\begin{aligned}
& \ulcorner-\urcorner \in \operatorname{Exp} \rightarrow C E x p \\
& \ulcorner x\urcorner=\operatorname{Var}(\ulcorner x\urcorner) \\
& \begin{array}{l}
\left\ulcorner e_{1} e_{2}{ }^{\urcorner}=\operatorname{Apply}\left(\left\ulcornere_{1}{ }^{\urcorner},\left\ulcorner e_{2}{ }^{\urcorner}\right)\right.\right.\right. \\
\ulcorner\lambda x . e\urcorner=\operatorname{Lambda}\left(\ulcorner x\urcorner,\left\ulcorner e e^{\urcorner}\right)\right.
\end{array}
\end{aligned}
$$

Representing expressions

Coding function:

$$
\begin{aligned}
& \ulcorner-\urcorner \in E x p \rightarrow C E x p \\
& \left.\ulcorner\operatorname{var} x\urcorner \quad=\text { const }{ }^{\ulcorner } \text {Var }{ }^{\urcorner}\left(\text {cons }{ }^{\ulcorner } x\right\urcorner \text { nil }\right) \\
& \left\ulcorner\text { apply } e_{1} e_{2}{ }^{\urcorner}=\text {const }{ }^{\ulcorner }\right. \text {Apply } \\
& \left(\text { cons }\left\ulcorner e_{1}\right\urcorner\left(\text { cons }\left\ulcorner e_{2}\right\urcorner \text { nil }\right)\right) \\
& \left\ulcorner\text { lambda } x e^{\urcorner}=\text {const }{ }^{\ulcorner } \text {Lambda }{ }^{\urcorner}\right. \\
& \text {(cons }\ulcorner x\urcorner(\text { cons }\ulcorner e\urcorner \text { nil }))
\end{aligned}
$$

Representing expressions

Coding function:

$$
\begin{aligned}
& \ulcorner-\urcorner \in E x p \rightarrow C E x p \\
& \ulcorner\operatorname{var} x\urcorner=\text { const }{ }^{\ulcorner } \operatorname{Var}^{\urcorner}(\text {cons }\ulcorner x\urcorner \text { nil }) \\
& \left\ulcorner\text { apply } e_{1} e_{2}{ }^{\urcorner}=\text {const }{ }^{\ulcorner }\right. \text {Apply } \\
& \left(\text { cons }\left\ulcorner e_{1}\right\urcorner\left(\text { cons }\left\ulcorner e_{2}\right\urcorner \text { nil }\right)\right) \\
& { }^{\ulcorner } \text {lambda } x e^{\urcorner}=\text {const }{ }^{\ulcorner } \text {Lambda }{ }^{\urcorner} \\
& \text {(cons }\ulcorner x\urcorner(\text { cons }\ulcorner e\urcorner \text { nil }))
\end{aligned}
$$

Alternative type:

$$
\left\ulcorner{ }_{-}{ }^{\urcorner} \in \operatorname{Exp} A \rightarrow C \operatorname{Exp}(\operatorname{Rep} A)\right.
$$

Rep A : Representations of programs of type A.

Computability

- $f \in A \rightharpoonup B$ is χ-computable if

$$
\exists e \in C E x p . \forall a \in A . \llbracket e\ulcorner a\urcorner \rrbracket=\ulcorner f a\urcorner .
$$

- Use reasonable coding functions:
- Injective.
- Computable. But how is this defined?
- X-decidable: $f \in A \rightarrow$ Bool.
- X-semi-decidable:

If $f a=$ false then $\left.\llbracket e^{\ulcorner } a\right\urcorner \rrbracket$ is undefined.

Some computable partial functions

- The semantics $\llbracket-\rrbracket \in C E x p \rightharpoonup C E x p:$

$$
\forall e \in C E x p . \llbracket e v a l\ulcorner e\urcorner \rrbracket=\ulcorner\llbracket e \rrbracket\urcorner \text {. }
$$

- The coding function $\left.{ }^{\ulcorner }{ }_{-}\right\urcorner \in E x p \rightarrow C E x p:$

$$
\left.\forall e \in \operatorname{Exp} . \llbracket \operatorname{cod} e^{\ulcorner } e\right\urcorner \rrbracket=\left\ulcorner\left\ulcorner e^{\urcorner\urcorner}\right.\right.
$$

- The "Terminates in n steps?" function terminates-in $\in C E x p \times \mathbb{N} \rightarrow$ Bool:

$$
\begin{aligned}
& \forall p \in C E x p \times \mathbb{N} . \\
& \llbracket \underline{\text { terminates-in }}\ulcorner p\urcorner \rrbracket=\ulcorner\text { terminates-in } p\urcorner .
\end{aligned}
$$

Some non-computable partial functions

The halting problem with self-application,

$$
\begin{aligned}
& \text { halts-self } \in C E x p \rightarrow \text { Bool } \\
& \text { halts-self } p=
\end{aligned}
$$

if $p\ulcorner p\urcorner$ terminates then true else false,
can be reduced to the halting problem,
halts \in CExp \rightarrow Bool
halts $p=$ if p terminates then true else false.

Some non-computable partial functions

Proof sketch:

- Assume that halts implements halts.
- Define halts-self in the following way:

$$
\underline{\text { halts-self }}=\lambda p . \underline{\text { halts }} \operatorname{Apply}(p, \text { code } p)
$$

- halts-self implements halts-self,

$$
\begin{aligned}
& \forall e \in C \text { Exp. } \\
& \llbracket \underline{\text { halts-self }}\ulcorner e\urcorner \rrbracket=\ulcorner\text { halts-self } e\urcorner,
\end{aligned}
$$

because Apply $\left.\left(\ulcorner e\urcorner, \operatorname{code}{ }^{\ulcorner } e\right\urcorner\right) \Downarrow\left\ulcorner e\left\ulcorner e e^{\urcorner\urcorner}\right.\right.$.

Some non-computable partial functions

The halting problem can be reduced to:

- Semantic equality:

$$
\begin{aligned}
& \text { equal } \in C E x p \times C E x p \rightarrow \text { Bool } \\
& \text { equal }\left(e_{1}, e_{2}\right)= \\
& \quad \text { if } \llbracket e_{1} \rrbracket=\llbracket e_{2} \rrbracket \text { then true else false }
\end{aligned}
$$

- Pointwise equality of elements in Fun $=\{f \in \mathbb{N} \rightarrow$ Bool $\mid f$ is χ-computable $\}$:

$$
\begin{aligned}
& \text { pointwise-equal } \in \text { Fun } \times \text { Fun } \rightarrow \text { Bool } \\
& \text { pointwise-equal }(f, g)=
\end{aligned}
$$

if $\forall n \in \mathbb{N}$. $f n=g n$ then true else false

Quiz

What is wrong with the following reduction of the halting problem to pointwise-equal?

$$
\begin{aligned}
& \underline{\text { halts }}=\lambda p \cdot \underline{\text { not }} \text { (pointwise-equal } \\
& \text { Lambda(} \left.{ }^{\circ} n\right\urcorner \text {, } \\
& \text { Apply (}{ }^{\text {terminates-in }}{ }^{7} \text {, } \\
& \text { Const(}{ }^{\text {Pair }}{ }^{7} \text {, } \\
& \operatorname{Cons}(p, \operatorname{Cons}(\operatorname{Var}(\ulcorner n\urcorner), \operatorname{Nil}()))))) \\
& \left.\left\ulcorner\lambda_{\text {. }} \text {. False(}\right)^{7}\right)
\end{aligned}
$$

Bonus question: How can the problem be fixed?

Some non-computable partial functions

The halting problem can be reduced to:

- An optimal optimiser:

$$
\begin{aligned}
& \text { optimise } \in C E x p \rightarrow C E x p \\
& \text { optimise } e=
\end{aligned}
$$

some optimally small expression with the same semantics as e

- Is a computable real number equal to zero?

$$
\begin{aligned}
& \text { is-zero } \in \text { Interval } \rightarrow \text { Bool } \\
& \text { is-zero } x=\text { if } \llbracket x \rrbracket=0 \text { then true else false }
\end{aligned}
$$

- Many other functions, see Rice's theorem.

Turing machines

- A tape with a head:

Head

- A state.
- Rules.

Turing machines

- Abstract syntax.
- Small-step operational semantics.
- The semantics as a family of partial functions:

$$
\llbracket-\rrbracket \in \forall t m \in T M . \text { List } \Sigma_{t m} \rightharpoonup \text { List } \Gamma_{t m}
$$

- Several variants:
- Accepting states.
- Possibility to stay put.
- A tape without a left end.
- Multiple tapes.
- Only two symbols (plus \sqcup).

Turing-computability

- Representing inductively defined sets.
- Turing-computable partial functions.
- Turing-decidable languages.
- Turing-recognisable languages.

Some computable partial functions

- The semantics (uncurried):

$$
\begin{aligned}
& \left\{(t m, x s) \mid t m \in T M, x s \in \text { List } \Sigma_{t m}\right\} \rightharpoonup \\
& \text { List } \Gamma_{t m}
\end{aligned}
$$

Self-interpreter/universal TM.

- The χ semantics.

Equivalence

- The Turing machine semantics is also χ-computable.
- Functions $f \in \mathbb{N} \rightharpoonup \mathbb{N}$ are Turing-computable iff they are χ-computable.

Finally

- We have studied the concept of "computation".
- How can "computation" be formalised?
- To simplify our work: Idealised models.
- The Church-Turing thesis.
- We have explored the limits of computation:
- Programs that can run arbitrary programs.
- A number of non-computable problems.

