Nils Anders Danielsson

2016-12-05

Today

Coding (for x).
Representing inductively defined sets as strings.
Turing-computability.

A self-interpreter (a universal Turing machine).

>
>
>
» Representing Turing machines.
>
» The halting problem.

>

A Turing machine that is a y interpreter.

Coding

L d
One way to give a semantics to | _

» __ is a constructor of a variant of Ezp:

e € FBxp e, € Exp ey € Exp

e € Ekxp apply e; e5 € Exp
» This variant is the domain of " _

"_'€ Exp— Exp
e =e

L J

i apply €, e = APP|Y(r €1 0 €9 j)

» Example:
"eval _code e "= Apply(" eval ', code e)

» Note that you do not have to use _ .

Probably not what you want:

Ap. "eval p = Ap. Apply(" eval ,Var("p "))
If p corresponds to 0:

Ap. Apply(" eval 7, Var(Zero()))

A constant function.

Perhaps more useful:
Ap. "eval _code p "= Ap. Apply(" eval ", code p)
For any expression e:

B

(Ap. "eval codep ") e | " eval " e’

Nothing

Zero()

" Zero() "

rr Zero(> a0
I_I'I-Zero()-l'l-l
I_I-I-I-Zero<)-|'l-l-l

vV vV v v v Vv

Representing
inductively
defined sets

One method:

"_ e N-— List {1}
"zero' =]
"sucn =1:="n"

Another method:

" T e N List {0,1}
"zero' =0:]]
"sucn '=1="n'

This method is used below.

Lists

Assume that A can be represented using a function
"_ '€ A— List ¥ which satisfies the following
properties:

» It is injective.

» There is a function

split € List X — List X X List X
such that, for any z € A, zs € List X,

split ("x " H xs) ="z, zs).

Lists

Assume that A can be represented using a function
"_ '€ A— List ¥ which satisfies the following
properties:

» It is injective.

» There is a function

split € List X — List X X List X
such that, for any z € A, zs € List X,
split ("x " H xs) ="z, zs).

Note that split can only be defined for one of the
presented methods for representing natural numbers.

Representation of List A:
"€ List A— List (XU{0,1})
{17 =0x]]

"roaxs =1="x H s

This function also satisfies the given properties.

Turing-
computability

Turing-computable functions

Assume that we have methods for representing
members of the sets A and B as elements of
List 33, where X is a finite set.

A partial function f € A — B is Turing-computable
if there is a Turing machine ¢m such that:

>, =2
» VYac A [tm]"a’'="fa’.

» A language over an alphabet X is
a subset of List 3.

Turing-decidable

A language L over X is Turing-decidable if there is
a Turing machine ¢tm (with accepting states)
such that:

> X, = .
> Vas € List 3. if zs € L then Accept, = ws.
» Vas € List 3. if zs ¢ L then Reject, = s.

Turing-recognisable

A language L over X is Turing-recognisable if there
is a Turing machine tm (with accepting states)
such that:

> X, = .
> Vas € List X. xs € L iff Accept, = s.

Representing
Turing
machines

Assume that S = {5, ..., s, }-
Note that S is always non-empty.
r S A r n A

r A l_k—l

Sk

Assume that ¥ = {¢,, ..., ¢,, } and
F'={_}U{c, s Cmant

I_Z—I:l_m—l
I_F-I :l_n—l
l_l_l—l :l_O—I
l_ck—l_l_k—l

The transition function

» Arule 6 (s,z) = (s",2’, d) is represented by
I_S—I—|—|—,—:L'—I—H—|_S/—I—|—I—r$/-l—|—|—rd—l_

» The transition function is represented by the
representation of a list containing all of its
rules (ordered in some way).

Turing machines and strings
» A Turing machine (S, sy, 2, [',8) € TM is
represented by
I_S—I—H—I—So—l—‘l—}—’_z—l—H—l—Fj—i—l—r5—l_

» A pair consisting of a Turing machine ¢tm and a
corresponding input string xs is represented by

“tm ' H " xs .

» Note that this encoding only uses two
non-blank symbols, 0 and 1.

» None
» S={s}, 2={0}, ' ={0,.},
d (89,0) = (s9,0,L)

» S={s} £={0,1}, '={0,1,0},
0 (80,0> = (307 17 R)

Self-

Interpreter

Self-interpreter

A self-interpreter or universal Turing machine
eval is a witness to the fact that [_] is
Turing-computable:

eual {0 1}

Vime TM. VY zs € List ¥,
[eval] " (tm,xzs) "= "[tm] xs

Implementation sketch

Possibly buggy:

» Let us use three tapes in the implementation.
Can convert to a one-tape machine later.

» Mark the left end of the input tape.
Convert to a two-symbol machine later.

» Move the input string to the second tape.
Mark the left end and the head's position.

» Write the initial state to the third tape.
Mark the left end.

Implementation sketch

» Simulate the input TM,
using the rules on the first tape.

» If the simulation halts successfully
(with the head at the start of its tape),
write the result to the first tape and
halt successfully.

» If the simulation halts unsuccessfully,
halt unsuccessfully.

The halting
problem

The halting problem

halts € {(tm,zs) | tm € TM,xs € List %, } — Bool
halts (tm, xs) =
if 3ys € List T',,,. [tm] zs = ys then
true
else
false

This function is not Turing-computable.

The halting problem

The halting problem can also be viewed as a
language:

{" (tm,zs) " | tm € TM,
rs € List X

tm>
ys € List I,
[tm] zs = ys}

This language is Turing-undecidable.

The halting problem (with self-application)

{"tm™ | tm e TM,ys € List T', ,[tm] "tm "= ys}

This language is Turing-undecidable. Proof sketch:
» Assume that the TM halts decides it.
» Define a TM terminv in the following way:

» Simulate halts on the input.
» If halts accepts, loop forever.
» If halts rejects, halt with a result.

» Note that terminv applied to " terminv ' halts
iff it does not halt.

The halting problem is undecidable

{"(tm,zs) " | tm € TM,zs € List ¥,,,
ys € List T',, [tm] xs = ys}

Proof sketch:
» Assume that the TM halts decides it.
» We can then implement a TM for the
halting problem with self-application:
» If the input is not " tm ' for some
tm € TM, reject.

» Ifitis " tm ', write 2?7 on the tape.
» Run halts.

tm

vV vV v v v Vv

" tm
AT

tm +H " tm "
“tm ' H " tm
tm+H"tm H " tm

a0

o

X interpreter

A Y interpreter

The x semantics is Turing-computable:

» X programs can be represented as strings in
some finite alphabet 3:

"_"™ ¢ CExp — List ©

» There is a TM chi satisfying the following
properties:

Echz’ =X

Vee CErp. [chi]py "e ™ ="[e], ™

» How can recursion be implemented?
» One idea: An explicit stack on a separate tape.

Implementation sketch

» Come up with a small-step semantics for .
» Use small steps also for substitution.

» Make sure that every small step can be
simulated on a TM.

» The design can be based on some
abstract machine for the \-calculus,
perhaps the CEK machine.

Every y-computable partial function in
N — N is Turing-computable

Proof sketch:
» If f € N— N is y-computable, then

VmeN. [e"m™X] ="fm™X

for some e € CFExp.
» The following TM implements f:
» Convert input: “m ™= "e"m
» Simulate the interpreter
» Convert output: ""n XM 5Ty

Ix 7TM

™M

Summary

Coding (for x).
Representing inductively defined sets as strings.
Turing-computability.

A self-interpreter (a universal Turing machine).

>
>
>
» Representing Turing machines.
>
» The halting problem.

>

A Turing machine that is a y interpreter.

	Introduction
	Coding
	Representing inductively defined sets
	Turing-computability
	Representing Turing machines
	Self-interpreter
	The halting problem
	Χ interpreter
	Summary

