
Lecture
Models of Computation

(DIT310, TDA184)

Nils Anders Danielsson

2016-12-05

Today

▶ Coding (for 𝜒).
▶ Representing inductively defined sets as strings.
▶ Turing-computability.
▶ Representing Turing machines.
▶ A self-interpreter (a universal Turing machine).
▶ The halting problem.
▶ A Turing machine that is a 𝜒 interpreter.

Coding

⌞ ⌟
One way to give a semantics to ⌞ ⌟:

▶ ⌞ ⌟ is a constructor of a variant of Exp:

e ∈ Exp

⌞ e ⌟ ∈ Exp

e1 ∈ Exp e2 ∈ Exp

apply e1 e2 ∈ Exp
⋯

▶ This variant is the domain of ⌜ ⌝:

⌜ ⌝ ∈ Exp → Exp
⌜ ⌞ e ⌟ ⌝ = e
⌜ apply e1 e2 ⌝ = Apply(⌜ e1 ⌝, ⌜ e2 ⌝)
⋮

⌞ ⌟

▶ Example:

⌜ eval ⌞ code e ⌟ ⌝ = Apply(⌜ eval ⌝, code e)

▶ Note that you do not have to use ⌞ ⌟.

Coding

Probably not what you want:

𝜆p. ⌜ eval p ⌝ = 𝜆p. Apply(⌜ eval ⌝,Var(⌜ p ⌝))

If p corresponds to 0:

𝜆p. Apply(⌜ eval ⌝,Var(Zero()))

A constant function.

Coding

Perhaps more useful:

𝜆p. ⌜ eval ⌞ code p ⌟ ⌝ = 𝜆p. Apply(⌜ eval ⌝, code p)

For any expression e:

(𝜆p. ⌜ eval ⌞ code p ⌟ ⌝) ⌜ e ⌝ ⇓ ⌜ eval ⌜ e ⌝ ⌝

Quiz

What is the result of evaluating
(𝜆p. eval ⌜ eval ⌞ code p ⌟ ⌝) ⌜Zero() ⌝?

▶ Nothing
▶ Zero()
▶ ⌜Zero() ⌝
▶ ⌜ ⌜Zero() ⌝ ⌝
▶ ⌜ ⌜ ⌜Zero() ⌝ ⌝ ⌝
▶ ⌜ ⌜ ⌜ ⌜Zero() ⌝ ⌝ ⌝ ⌝

Representing
inductively
defined sets

Natural numbers

One method:

⌜ ⌝ ∈ ℕ → List {1}
⌜ zero ⌝ = []
⌜ suc n ⌝ = 1 ∷ ⌜ n ⌝

Natural numbers

Another method:

⌜ ⌝ ∈ ℕ → List {0, 1}
⌜ zero ⌝ = 0 ∷ []
⌜ suc n ⌝ = 1 ∷ ⌜ n ⌝

This method is used below.

Lists
Assume that A can be represented using a function
⌜ ⌝ ∈ A → List Σ which satisfies the following
properties:

▶ It is injective.
▶ There is a function

split ∈ List Σ → List Σ × List Σ

such that, for any x ∈ A, xs ∈ List Σ,

split (⌜ x ⌝ ++ xs) = (⌜ x ⌝, xs).

Note that split can only be defined for one of the
presented methods for representing natural numbers.

Lists
Assume that A can be represented using a function
⌜ ⌝ ∈ A → List Σ which satisfies the following
properties:

▶ It is injective.
▶ There is a function

split ∈ List Σ → List Σ × List Σ

such that, for any x ∈ A, xs ∈ List Σ,

split (⌜ x ⌝ ++ xs) = (⌜ x ⌝, xs).

Note that split can only be defined for one of the
presented methods for representing natural numbers.

Lists

Representation of List A:

⌜ ⌝ ∈ List A → List (Σ ∪ {0, 1})
⌜ [] ⌝ = 0 ∷ []
⌜ x ∷ xs ⌝ = 1 ∷ ⌜ x ⌝ ++ ⌜ xs ⌝

This function also satisfies the given properties.

Quiz

Which list of natural numbers does
11110101110100 stand for?

▶ None
▶ [3, 0, 2]
▶ [3, 0, 2, 0]
▶ [3, 2, 0]
▶ [4, 1, 3, 1]
▶ [4, 1, 3, 1, 0]

Turing-
computability

Turing-computable functions
Assume that we have methods for representing
members of the sets A and B as elements of
List Σ, where Σ is a finite set.

A partial function f ∈ A ⇀ B is Turing-computable
if there is a Turing machine tm such that:

▶ Σtm = Σ.
▶ ∀a ∈ A. ⟦tm ⟧ ⌜ a ⌝ = ⌜ f a ⌝.

Languages

▶ A language over an alphabet Σ is
a subset of List Σ.

Turing-decidable
A language L over Σ is Turing-decidable if there is
a Turing machine tm (with accepting states)
such that:

▶ Σtm = Σ.
▶ ∀xs ∈ List Σ. if xs ∈ L then Accept

tm
xs .

▶ ∀xs ∈ List Σ. if xs ∉ L then Reject
tm

xs .

Turing-recognisable
A language L over Σ is Turing-recognisable if there
is a Turing machine tm (with accepting states)
such that:

▶ Σtm = Σ.
▶ ∀xs ∈ List Σ. xs ∈ L iff Accept

tm
xs .

Representing
Turing

machines

States

Assume that S = {s0, …, s𝑛}.
Note that S is always non-empty.

⌜ S ⌝ = ⌜ n ⌝
⌜ s𝑘 ⌝ = ⌜ k ⌝

Alphabets

Assume that Σ = {c1, …, c𝑚} and
Γ = {␣} ∪ {c1, …, c𝑚+𝑛}.

⌜ Σ ⌝ = ⌜m ⌝
⌜ Γ ⌝ = ⌜ n ⌝
⌜ ␣ ⌝ = ⌜ 0 ⌝
⌜ c𝑘 ⌝ = ⌜ k ⌝

Directions

⌜ L ⌝ = [0]
⌜R ⌝ = [1]

The transition function

▶ A rule 𝛿 (s, x) = (s′, x ′, d) is represented by

⌜ s ⌝ ++ ⌜ x ⌝ ++ ⌜ s′ ⌝ ++ ⌜ x ′ ⌝ ++ ⌜ d ⌝.

▶ The transition function is represented by the
representation of a list containing all of its
rules (ordered in some way).

Turing machines and strings

▶ A Turing machine (S , s0, Σ, Γ, 𝛿) ∈ TM is
represented by

⌜ S ⌝ ++ ⌜ s0 ⌝ ++ ⌜ Σ ⌝ ++ ⌜ Γ ⌝ ++ ⌜ 𝛿 ⌝.

▶ A pair consisting of a Turing machine tm and a
corresponding input string xs is represented by

⌜ tm ⌝ ++ ⌜ xs ⌝.

▶ Note that this encoding only uses two
non-blank symbols, 0 and 1.

Quiz

What Turing machine does
000110010011101010110001110101010001
represent?

▶ None
▶ S = {s0}, Σ = {0}, Γ = {0, ␣},

𝛿 (s0, 0) = (s0, 0, L)
▶ S = {s0}, Σ = {0, 1}, Γ = {0, 1, ␣},

𝛿 (s0, 0) = (s0, 1,R)

Self-
interpreter

Self-interpreter

A self-interpreter or universal Turing machine
eval is a witness to the fact that ⟦ ⟧ is
Turing-computable:

Σeval = {0, 1}

∀ tm ∈ TM . ∀ xs ∈ List Σtm .
⟦eval ⟧ ⌜ (tm, xs) ⌝ = ⌜ ⟦tm ⟧ xs ⌝

Implementation sketch

Possibly buggy:
▶ Let us use three tapes in the implementation.

Can convert to a one-tape machine later.
▶ Mark the left end of the input tape.

Convert to a two-symbol machine later.
▶ Move the input string to the second tape.

Mark the left end and the head’s position.
▶ Write the initial state to the third tape.

Mark the left end.

Implementation sketch

▶ Simulate the input TM,
using the rules on the first tape.

▶ If the simulation halts successfully
(with the head at the start of its tape),
write the result to the first tape and
halt successfully.

▶ If the simulation halts unsuccessfully,
halt unsuccessfully.

The halting
problem

The halting problem

halts ∈ {(tm, xs) ∣ tm ∈ TM , xs ∈ List Σtm } → Bool
halts (tm, xs) =

if ∃ ys ∈ List Γtm . ⟦tm ⟧ xs = ys then
true

else
false

This function is not Turing-computable.

The halting problem

The halting problem can also be viewed as a
language:

{⌜ (tm, xs) ⌝ ∣ tm ∈ TM ,
xs ∈ List Σtm ,
ys ∈ List Γtm ,
⟦tm ⟧ xs = ys }

This language is Turing-undecidable.

The halting problem (with self-application)

{⌜ tm ⌝ ∣ tm ∈ TM , ys ∈ List Γtm , ⟦tm ⟧ ⌜ tm ⌝ = ys }

This language is Turing-undecidable. Proof sketch:
▶ Assume that the TM halts decides it.
▶ Define a TM terminv in the following way:

▶ Simulate halts on the input.
▶ If halts accepts, loop forever.
▶ If halts rejects, halt with a result.

▶ Note that terminv applied to ⌜ terminv ⌝ halts
iff it does not halt.

The halting problem is undecidable

{⌜ (tm, xs) ⌝ ∣ tm ∈ TM , xs ∈ List Σtm ,
ys ∈ List Γtm , ⟦tm ⟧ xs = ys }

Proof sketch:
▶ Assume that the TM halts decides it.
▶ We can then implement a TM for the

halting problem with self-application:
▶ If the input is not ⌜ tm ⌝ for some
tm ∈ TM , reject.

▶ If it is ⌜ tm ⌝, write ??? on the tape.
▶ Run halts .

Quiz

What does ??? stand for?
▶ tm

▶ ⌜ tm ⌝
▶ ⌜ ⌜ tm ⌝ ⌝
▶ tm ++ ⌜ tm ⌝
▶ ⌜ tm ⌝ ++ ⌜ ⌜ tm ⌝ ⌝
▶ tm ++ ⌜ tm ⌝ ++ ⌜ ⌜ tm ⌝ ⌝

Χ interpreter

A 𝜒 interpreter
The 𝜒 semantics is Turing-computable:

▶ Χ programs can be represented as strings in
some finite alphabet Σ:

⌜ ⌝TM ∈ CExp → List Σ

▶ There is a TM chi satisfying the following
properties:

Σchi = Σ

∀ e ∈ CExp. ⟦chi ⟧TM ⌜ e ⌝TM = ⌜ ⟦e ⟧𝜒 ⌝TM

Recursion

▶ How can recursion be implemented?
▶ One idea: An explicit stack on a separate tape.

Implementation sketch

▶ Come up with a small-step semantics for 𝜒.
▶ Use small steps also for substitution.
▶ Make sure that every small step can be

simulated on a TM.
▶ The design can be based on some

abstract machine for the 𝜆-calculus,
perhaps the CEK machine.

Every 𝜒-computable partial function in
ℕ ⇀ ℕ is Turing-computable

Proof sketch:
▶ If f ∈ ℕ ⇀ ℕ is 𝜒-computable, then

∀ m ∈ ℕ. ⟦e ⌜m ⌝𝜒⟧𝜒 = ⌜ f m ⌝𝜒

for some e ∈ CExp.
▶ The following TM implements f :

▶ Convert input: ⌜m ⌝TM ↦ ⌜ e ⌜m ⌝𝜒 ⌝TM.
▶ Simulate the 𝜒 interpreter.
▶ Convert output: ⌜ ⌜ n ⌝𝜒 ⌝TM ↦ ⌜ n ⌝TM.

Summary

▶ Coding (for 𝜒).
▶ Representing inductively defined sets as strings.
▶ Turing-computability.
▶ Representing Turing machines.
▶ A self-interpreter (a universal Turing machine).
▶ The halting problem.
▶ A Turing machine that is a 𝜒 interpreter.

	Introduction
	Coding
	Representing inductively defined sets
	Turing-computability
	Representing Turing machines
	Self-interpreter
	The halting problem
	Χ interpreter
	Summary

