Lecture Models of Computation (DIT310, TDA184)

Nils Anders Danielsson

2016-11-28

Today

- ▶ A comment about types.
- ▶ Rice's theorem.
- ► Turing machines.

- ▶ The language χ is untyped.
- ▶ However, it may be instructive to see certain programs as typed.

- ightharpoonup Rep A: Representations of programs of type A.
- ▶ Some examples:

```
Zero()
                                : №
「Zero() ¬
                               : Rep \ \mathbb{N}
<sup>r</sup>zero <sup>¬</sup>
                                : N
                               : (A \to B) \to A \to B
\lambda f. \lambda x. f x
\lambda f. \lambda x. \mathsf{Apply}(f, x) : Rep (A \to B) \to
                                 Rep A \rightarrow Rep B
                                : Rep \ A \rightarrow Rep \ A
eval
                                : Rep \ A \rightarrow Rep \ (Rep \ A)
code
                                : Rep \ A \times \mathbb{N} \to Bool
terminates-in
「terminates-in ¬
                                : Rep \ (Rep \ A \times \mathbb{N} \to Bool)
```

A reduction from last week:

Expanded:

```
\begin{array}{cccc} \lambda \, p. \; not \; (pointwise\text{-}equal' \\ & \mathsf{Lambda}(\lceil \, n \, \rceil, \\ & \mathsf{Apply}(\lceil \, terminates\text{-}in \, \rceil, \\ & \mathsf{Const}(\lceil \, \mathsf{Pair} \, \rceil, \\ & \mathsf{Cons}(code \; p, \\ & \mathsf{Cons}(\mathsf{Var}(\lceil \, n \, \rceil), \mathsf{Nil}()))))) \\ & \lceil \, \lambda \, \_. \; \mathsf{False}() \, \rceil) \end{array}
```

```
If \begin{array}{c} pointwise\text{-}equal':\\ Rep\ (\mathbb{N}\to Bool)\times Rep\ (\mathbb{N}\to Bool)\to Bool\\ \\ \text{then} \\ halts: Rep\ A\to Bool. \end{array}
```

Rice's theorem

Rice's theorem

Assume that $P \in \mathit{CExp} \to \mathit{Bool}$ satisfies the following properties:

- ▶ *P* is non-trivial:
 - There are expressions e_{true} , $e_{\text{false}} \in \textit{CExp}$ satisfying P $e_{\text{true}} = \text{true}$ and P $e_{\text{false}} = \text{false}$.
- ▶ P respects pointwise semantic equality:

$$\forall \ e_1, e_2 \in \mathit{CExp}.$$
 if $\forall \ e \in \mathit{CExp}. \ \llbracket e_1 \ e \rrbracket = \llbracket e_2 \ e \rrbracket \ \text{then}$
$$P \ e_1 = P \ e_2$$

Then P is χ -undecidable.

Rice's theorem

The halting problem reduces to P:

```
\begin{split} halts &= \lambda\,e. \; \mathbf{case} \; P \, \lceil \, \lambda \, \_. \; \mathbf{rec} \; x = x \, \rceil \; \mathbf{of} \\ &\{ \mathsf{False}() \to \\ &P \, \lceil \, \lambda \, x. \; (\lambda \, \_. \; e_{\mathsf{true}} \; x) \; (eval \, \lfloor \, code \; e \, \rfloor) \, \rceil \\ &; \mathsf{True}() \to \\ &not \; (P \, \lceil \, \lambda \, x. \; (\lambda \, \_. \; e_{\mathsf{false}} \; x) \; (eval \, \lfloor \, code \; e \, \rfloor) \, \rceil) \\ &\} \end{split}
```

Quiz

Which of the following problems are χ -decidable?

- ▶ Is $e \in CExp$ an implementation of the successor function for natural numbers?
- ▶ Is $e \in CExp$ syntactically equal to λn . Succ(n)?

Turing machines

Intuitive idea

- ▶ A tape that extends arbitrarily far to the right.
- ▶ The tape is divided into squares.
- ► The squares can contain symbols, chosen from a finite alphabet.
- ▶ A read/write head, positioned over one square.
- The head can move from one square to an adjacent one.
- Rules that explain what the head does.

Rules

- ▶ A finite set of states.
- ▶ When the head reads a symbol (blank squares correspond to a special symbol):
 - Check if the current state contains a matching rule, with:
 - A symbol to write.
 - A direction to move in.
 - A state to switch to.
 - ▶ If not, halt.

Motivation

- ► Turing motivated his design partly by reference to what a human computer does.
- ▶ Please read his text.

Abstract

syntax

Abstract syntax

A Turing machine (one variant) is specified by giving the following information:

- ▶ S: A finite set of states.
- ▶ $s_0 \in S$: An initial state.
- ▶ Σ : The input alphabet, a finite set of symbols with $\bot \notin \Sigma$.
- ▶ Γ : The tape alphabet, a finite set of symbols with $\Sigma \cup \{ \sqcup \} \subseteq \Gamma$.
- ▶ $\delta \in S \times \Gamma \rightarrow S \times \Gamma \times \{L, R\}$: The transition "function".

Abstract syntax

$$S \text{ is a finite set} \qquad s_0 \in S$$

$$\Sigma \text{ is a finite set} \qquad \sqcup \notin \Sigma$$

$$\Gamma \text{ is a finite set} \qquad \Sigma \cup \{\sqcup\} \subseteq \Gamma$$

$$\frac{\delta \in S \times \Gamma \rightharpoonup S \times \Gamma \times \{\mathsf{L},\mathsf{R}\}}{(S,s_0,\Sigma,\Gamma,\delta) \in \mathit{TM}}$$

Operational

semantics

Positioned tapes

▶ Representation of the tape and the head's position:

$$Tape = List \ \Gamma \times List \ \Gamma$$

▶ Here (ls, rs) stands for

$$reverse ls + rs$$

followed by an infinite sequence of blanks (\Box) .

Positioned tapes

 $([2,1],[3,4,{\scriptscriptstyle \sqcup},{\scriptscriptstyle \sqcup}])$ stands for:

The symbol under the head

The head is located over the first symbol in rs (or a blank, if rs is empty):

```
head_T \in Tape \to \Gamma

head_T (ls, rs) = head rs

head \in List \Gamma \to \Gamma

head [] = \sqcup

head (x :: xs) = x
```

Writing

Writing to the tape:

The "tail" of a sequence:

```
tail \in List \ \Gamma \to List \ \Gamma

tail \ [\ ] = [\ ]

tail \ (r :: rs) = rs
```

Moving

Moving the head:

```
\begin{array}{l} \textit{move} \in \{\mathsf{L}, \mathsf{R}\} \rightarrow \textit{Tape} \rightarrow \textit{Tape} \\ \textit{move} \; \mathsf{R} \; (\textit{ls}, \textit{rs}) = (\textit{head} \; \textit{rs} :: \textit{ls}, \textit{tail} \; \textit{rs}) \\ \textit{move} \; \mathsf{L} \; ([], \textit{rs}) = ([] & , \textit{rs}) \\ \textit{move} \; \mathsf{L} \; (\textit{ls}, \textit{rs}) = (\textit{tail} \; \textit{ls} & , \textit{head} \; \textit{ls} :: \textit{rs}) \end{array}
```

Actions

Actions describe what the head will do:

$$Action = \Gamma \times \{\mathsf{L},\mathsf{R}\}$$

Note:

$$\delta \in S \times \Gamma \rightharpoonup S \times Action$$

First write, then move:

$$act \in Action \to Tape \to Tape$$

 $act (x, d) t = move d (write x t)$

Quiz

Which of the following equalities are valid?

- ▶ act (0, L) (act (1, L) ([], [])) = ([], [0, 1])
- $\bullet \ act \ (0,\mathsf{L}) \ (act \ (1,\mathsf{L}) \ ([\,],[\,])) = ([0,1],[\,])$
- $\bullet \ act \ (0,\mathsf{L}) \ (act \ (1,\mathsf{L}) \ ([\,],[\,])) = ([1,0],[\,])$
- ▶ act (0, R) (act (1, R) ([], [])) = ([], [0, 1])
- ▶ act (0, R) (act (1, R) ([], [])) = ([0, 1], [])
- ▶ act (0, R) (act (1, R) ([], [])) = ([1, 0], [])

Small-step operational semantics

A configuration consists of a state and a tape:

$$Configuration = State \times Tape$$

The small-step operational semantics relates configurations:

$$\frac{\delta \ (s, head_T \ t) = (s', a)}{(s, t) \longrightarrow (s', act \ a \ t)}$$

Reflexive transitive closure

Zero or more small steps:

$$\frac{c_1 \longrightarrow c_2 \qquad c_2 \longrightarrow^{\star} c_3}{c_1 \longrightarrow^{\star} c_3}$$

The machine halts if it ends up in a configuration c for which there is no c' such that $c \longrightarrow c'$.

The machine's result

- ▶ The machine is started in state s_0 .
- ▶ The head is initially over the left-most square.
- ▶ The tape initially contains a string of characters from the input alphabet Σ (followed by blanks).
- ▶ If the machine halts with the head in the left-most square, then the result consists of the contents of the tape, up to the last non-blank symbol.

The machine's result

A relation between $List \Sigma$ and $List \Gamma$:

$$\underbrace{ \begin{array}{c} (s_0, [], xs) \longrightarrow^{\star} (s, [], rs) & \nexists c. \ (s, [], rs) \longrightarrow c \\ \hline remove \ rs = ys \\ \hline xs \Downarrow ys \\ \end{array} }$$

Removing blanks

The function remove removes all trailing blanks:

```
remove \in List \ \Gamma \rightarrow List \ \Gamma
remove \ [] = []
remove \ (x :: xs) = cons' \ x \ (remove \ xs)
cons' \in \Gamma \rightarrow List \ \Gamma \rightarrow List \ \Gamma
cons' \ _{\square} \ [] = []
cons' \ x \ xs = x :: xs
```

Quiz

Which properties does *↓* satisfy?

▶ Is it deterministic (for every Turing machine)?

$$\forall xs \in List \ \Sigma. \ \forall ys, zs \in List \ \Gamma.$$
$$xs \Downarrow ys \land xs \Downarrow zs \Rightarrow ys = zs$$

▶ Is it total (for every Turing machine)?

$$\forall xs \in List \ \Sigma. \ \exists ys \in List \ \Gamma. \ xs \downarrow ys$$

The machine's partial function

The semantics as a partial function:

$$\llbracket _ \rrbracket \in \forall \ tm \in TM. \ List \ \Sigma_{tm} \rightharpoonup List \ \Gamma_{tm} \\ \llbracket tm \rrbracket \ xs = ys \ \ \text{if} \ xs \downarrow_{tm} ys$$

An example

An example

- ▶ Input alphabet: $\{0,1\}$.
- ▶ Tape alphabet: $\{0, 1, \underline{0}, \underline{1}, \sqcup\}$.
- ▶ States: $\{s_0, s_1, s_2, s_3\}$.
- ▶ Initial state: s_0 .

Transition function

Quiz

What is the result of running this TM with 0101 as the input string?

- ▶ No result
- ▶ 0000
- ▶ 1111
- ▶ 0101
- ▶ 1010
- ▶ 0101
- ▶ 1010

Accepting states

Accepting states

Turing machines with accepting states:

Is the string accepted?

A relation on $List \Sigma$:

$$\frac{(s_0,[],xs) \longrightarrow^{\star} (s,t) \quad \nexists c. \ (s,t) \longrightarrow c}{s \in A}$$

$$\frac{Accept \ xs}{}$$

Is the string rejected?

A relation on $List \Sigma$:

$$\frac{(s_0,[],xs) \longrightarrow^{\star} (s,t)}{s \notin A} \not\exists c. (s,t) \longrightarrow c}{Reject \ xs}$$

Note that if the TM fails to halt, then the string is neither accepted nor rejected.

An example

- ▶ Input alphabet: {1}.
- ▶ Tape alphabet: $\{1, \sqcup\}$.
- ▶ States: $\{s_0, s_1\}$.
- ▶ Initial state: s_0 .
- Accepting states: $\{s_0\}$.

Transition function

Transition function

▶ Quiz: Which strings are accepted by this Turing machine?

Variants

Variants

Equivalent (in some sense) variants:

- ▶ Possibility to stay put.
- ▶ A tape without a left end.
- ▶ Multiple tapes.
- ▶ Only two symbols, other than the blank one.

Representing inductively defined sets

Natural numbers

One method:

```
\lceil \_ \rceil \in \mathbb{N} \to List \{1\}
\lceil \operatorname{zero} \rceil = []
\lceil \operatorname{suc} n \rceil = 1 :: \lceil n \rceil
```

Natural numbers

Another method (for $z \neq s$):

```
\lceil \_ \rceil \in \mathbb{N} \to List \ \{z, s\}
\lceil \mathsf{zero} \rceil = z :: []
\lceil \mathsf{suc} \ n \rceil = s :: \lceil n \rceil
```

Lists

Assume that A can be represented using a function $\lceil _ \rceil \in A \to List \ \Sigma$ which satisfies the following properties:

- ▶ It is injective.
- ▶ There is a function

$$split \in List \ \Sigma \to List \ \Sigma \times List \ \Sigma$$

such that, for any $x \in A$, $xs \in List \Sigma$,

$$split (\lceil x \rceil + xs) = (\lceil x \rceil, xs).$$

Lists

Assume that A can be represented using a function $\lceil _ \rceil \in A \to List \Sigma$ which satisfies the following properties:

- ▶ It is injective.
- ▶ There is a function

$$split \in \mathit{List} \ \Sigma \to \mathit{List} \ \Sigma \times \mathit{List} \ \Sigma$$

such that, for any $x \in A$, $xs \in List \Sigma$,

$$split (\lceil x \rceil + xs) = (\lceil x \rceil, xs).$$

Note that split can only be defined for one of the presented methods for representing natural numbers.

Lists

Representation of List A (for $n \neq c$):

```
\lceil \_ \rceil \in List \ A \to List \ (\Sigma \cup \{n, c\})
\lceil [ ] \rceil = n :: [ ]
\lceil x :: xs \rceil = c :: \lceil x \rceil + \lceil xs \rceil
```

This function also satisfies the given properties.

Quiz

Let n and z both stand for 0, and let s and c both stand for 1. Which list of natural numbers does 11110101110100 stand for?

- ▶ None
- \blacktriangleright [3, 0, 2]
- \triangleright [3, 0, 2, 0]
- ▶ [3, 2, 0]
- **▶** [4, 1, 3, 1]
- \blacktriangleright [4, 1, 3, 1, 0]

Turing-

computability

Turing-computable functions

Assume that we have methods for representing members of the sets A and B as elements of $List \Sigma$, where Σ is a finite set.

A partial function $f \in A \longrightarrow B$ is Turing-computable

if there is a Turing machine
$$tm$$
 such that: $\Sigma_{tm} = \Sigma$.

$$\forall a \in A. [tm] [a] = [f a].$$

Languages

▶ A language over an alphabet Σ is a subset of List Σ .

Turing-decidable

A language L over Σ is Turing-decidable if there is a Turing machine tm such that:

- - $\Sigma_{tm} = \Sigma$.

 $\blacktriangleright \ \forall xs \in List \ \Sigma. \ \text{if} \ xs \in L \ \text{then} \ Accept_{t_m} \ xs.$ ▶ $\forall xs \in List \Sigma$. if $xs \notin L$ then $Reject_{tm} xs$.

Turing-recognisable

A language L over Σ is Turing-recognisable if there is a Turing machine tm such that:

$$\Sigma_{tm} = \Sigma$$
.

Summary

- ▶ A comment about types.
- Rice's theorem.
- ► Turing machines:
 - Abstract syntax.
 - Operational semantics.
 - Variants.
 - Representing inductively defined sets.
 - Turing-computability.