Lecture
 Models of Computation (DIT310, TDA184)

Nils Anders Danielsson
2016-11-28

Today

- A comment about types.
- Rice's theorem.
- Turing machines.

Types

Types

- The language χ is untyped.
- However, it may be instructive to see certain programs as typed.

Types

- Rep A: Representations of programs of type A.
- Some examples:

$$
\begin{array}{ll}
\text { Zero }() & : \mathbb{N} \\
\ulcorner\text { Zero }()\urcorner & : \operatorname{Rep} \mathbb{N} \\
\ulcorner\text { zero }\urcorner & : \mathbb{N} \\
\lambda f . \lambda x . f x & :(A \rightarrow B) \rightarrow A \rightarrow B \\
\lambda f . \lambda x . \operatorname{Apply}(f, x) & : \operatorname{Rep}(A \rightarrow B) \rightarrow \\
& \operatorname{Rep} A \rightarrow \operatorname{Rep} B \\
\text { eval } & : \operatorname{Rep} A \rightarrow \operatorname{Rep} A \\
\text { code } & : \operatorname{Rep} A \rightarrow \operatorname{Rep}(\operatorname{Rep} A) \\
\text { terminates-in } & : \operatorname{Rep} A \times \mathbb{N} \rightarrow \text { Bool } \\
\ulcorner\text { terminates-in }\urcorner & : \operatorname{Rep}(\operatorname{Rep} A \times \mathbb{N} \rightarrow \text { Bool })
\end{array}
$$

Types

A reduction from last week:

$$
\begin{aligned}
& \text { halts }=\lambda p . \text { not (pointwise-equal } \\
& \quad\left\ulcorner\lambda_{n} \text { n. terminates-in Pair }(\llcorner\text { code } p, n)\urcorner\right. \\
& \quad\left\ulcorner\lambda_{_} \text {. False }()^{\urcorner}\right)
\end{aligned}
$$

Expanded:
λ p. not (pointwise-equal'
Lambda($\left.{ }^{\circ} n\right\urcorner$,
Apply (\ulcorner terminates-in \urcorner,
Const(${ }^{〔}$ Pair ${ }^{\urcorner}$,
Cons(code p,
$\operatorname{Cons}(\operatorname{Var}(\ulcorner n\urcorner), \operatorname{Nil}())))))$
${ }^{\ulcorner } \lambda_{-}$. False ()$\left.^{\urcorner}\right)$

Types

If

$$
\begin{aligned}
& \text { pointwise-equal' : } \\
& \qquad \operatorname{Rep}(\mathbb{N} \rightarrow \text { Bool }) \times \operatorname{Rep}(\mathbb{N} \rightarrow \text { Bool }) \rightarrow \text { Bool }
\end{aligned}
$$

then

$$
\text { halts : Rep } A \rightarrow \text { Bool. }
$$

$$
\begin{aligned}
& \text { Rice's } \\
& \text { theorem }
\end{aligned}
$$

Rice's theorem

Assume that $P \in C E x p \rightarrow$ Bool satisfies the following properties:

- P is non-trivial:

There are expressions $e_{\text {true }}, e_{\text {false }} \in C E x p$ satisfying $P e_{\text {true }}=$ true and $P e_{\text {false }}=$ false.

- P respects pointwise semantic equality:

$$
\begin{aligned}
& \forall e_{1}, e_{2} \in C E x p . \\
& \text { if } \forall e \in C E x p . \llbracket e_{1} e \rrbracket=\llbracket e_{2} e \rrbracket \text { then } \\
& \quad P e_{1}=P e_{2}
\end{aligned}
$$

Then P is χ-undecidable.

Rice's theorem

The halting problem reduces to P :
halts $=\lambda e$. case $P^{\ulcorner } \lambda_{-}$. rec $\left.x=x\right\urcorner$ of
$\{$ False ()\rightarrow

$$
P\left\ulcorner\lambda x .\left(\lambda_{-} . e_{\text {true }} x\right)\left(e^{\ulcorner v a l}{ }_{\llcorner } \operatorname{code} e_{\lrcorner}\right)\right\urcorner
$$

; True() \rightarrow

$$
\left.\operatorname{not}\left(P^{\ulcorner } \lambda x .\left(\lambda_{-} \cdot e_{\text {false }} x\right)\left(e v a l_{\llcorner } \operatorname{code} e_{\lrcorner}\right)\right\urcorner\right)
$$

$$
\}
$$

Quiz

Which of the following problems are χ-decidable?

- Is $e \in C E x p$ an implementation of the successor function for natural numbers?
- Is $e \in C E x p$ syntactically equal to λn. Succ (n) ?

Turing machines

Intuitive idea

- A tape that extends arbitrarily far to the right.
- The tape is divided into squares.
- The squares can contain symbols, chosen from a finite alphabet.
- A read/write head, positioned over one square.
- The head can move from one square to an adjacent one.
- Rules that explain what the head does.

Rules

- A finite set of states.
- When the head reads a symbol
(blank squares correspond to a special symbol):
- Check if the current state contains a matching rule, with:
- A symbol to write.
- A direction to move in.
- A state to switch to.
- If not, halt.

Motivation

- Turing motivated his design partly by reference to what a human computer does.
- Please read his text.

$$
\begin{gathered}
\text { Abstract } \\
\text { syntax }
\end{gathered}
$$

Abstract syntax

A Turing machine (one variant) is specified by giving the following information:

- S : A finite set of states.
- $s_{0} \in S$: An initial state.
- Σ : The input alphabet, a finite set of symbols with $\sqcup \notin \Sigma$.
- Γ : The tape alphabet, a finite set of symbols with $\Sigma \cup\{\sqcup\} \subseteq \Gamma$.
- $\delta \in S \times \Gamma \rightharpoonup S \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}:$

The transition "function".

Abstract syntax

> | S is a finite set $\quad \begin{array}{c}s_{0} \in S \\ \Sigma \text { is a finite set } \quad \sqcup \notin \Sigma \\ \Gamma \text { is a finite set } \quad \Sigma \cup\{\sqcup\} \subseteq \Gamma \\ \delta \in S \times \Gamma \rightharpoonup S \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}\end{array}$ |
| :---: |
| $\left(S, s_{0}, \Sigma, \Gamma, \delta\right) \in T M$ |

semantics

Positioned tapes

- Representation of the tape and the head's position:

$$
\text { Tape }=\text { List } \Gamma \times \text { List } \Gamma
$$

- Here ($l s, r s$) stands for

$$
\text { reverse } l s+r s
$$

followed by an infinite sequence of blanks (\sqcup).

Positioned tapes

$([2,1],[3,4, \sqcup, \sqcup])$ stands for:
Head

The symbol under the head

The head is located over the first symbol in rs (or a blank, if $r s$ is empty):

$$
\begin{aligned}
& \text { head }_{T} \in \text { Tape } \rightarrow \Gamma \\
& \text { head }(\text { ls, rs })=\text { head rs } \\
& \text { head } \in \text { List } \Gamma \rightarrow \Gamma \\
& \text { head }[]=\sqcup \\
& \text { head }(x:: x s)=x
\end{aligned}
$$

Writing

Writing to the tape:

$$
\begin{aligned}
& \text { write } \in \Gamma \rightarrow \text { Tape } \rightarrow \text { Tape } \\
& \text { write } x(l s, r s)=(l s, x:: \text { tail } r s)
\end{aligned}
$$

The "tail" of a sequence:

$$
\begin{aligned}
& \text { tail } \in \text { List } \Gamma \rightarrow \text { List } \Gamma \\
& \text { tail }[]=[] \\
& \text { tail }(r:: r s)=r s
\end{aligned}
$$

Moving

Moving the head:

$$
\begin{aligned}
& \text { move } \in\{\mathrm{L}, \mathrm{R}\} \rightarrow \text { Tape } \rightarrow \text { Tape } \\
& \text { move } \mathrm{R}(l s, r s)=(\text { head rs }:: l s, \text { tail rs }) \\
& \text { move } \mathrm{L}([], r s)=([] \quad, \text { rs }) \\
& \text { move } \mathrm{L}(l s, r s)=(\text { tail ls } \quad, \text { head ls }:: r s)
\end{aligned}
$$

Actions

Actions describe what the head will do:

$$
\text { Action }=\Gamma \times\{\mathrm{L}, \mathrm{R}\}
$$

Note:

$$
\delta \in S \times \Gamma \rightharpoonup S \times \text { Action }
$$

First write, then move:

$$
\begin{aligned}
& \text { act } \in \text { Action } \rightarrow \text { Tape } \rightarrow \text { Tape } \\
& \text { act }(x, d) t=\text { move } d(\text { write } x t)
\end{aligned}
$$

Quiz

Which of the following equalities are valid?

- act $(0, \mathrm{~L})(\operatorname{act}(1, \mathrm{~L})([],[]))=([],[0,1])$
- act $(0, \mathrm{~L})(\operatorname{act}(1, \mathrm{~L})([],[]))=([0,1],[])$
- act $(0, \mathrm{~L})(\operatorname{act}(1, \mathrm{~L})([],[]))=([1,0],[])$
- $\operatorname{act}(0, \mathrm{R})(\operatorname{act}(1, \mathrm{R})([],[]))=([],[0,1])$
- act $(0, R)(\operatorname{act}(1, R)([],[]))=([0,1],[])$
- act $(0, R)(\operatorname{act}(1, R)([],[]))=([1,0],[])$

Small-step operational semantics

A configuration consists of a state and a tape:

$$
\text { Configuration }=\text { State } \times \text { Tape }
$$

The small-step operational semantics relates configurations:

$$
\frac{\delta\left(s, \text { head }_{T} t\right)=\left(s^{\prime}, a\right)}{(s, t) \longrightarrow\left(s^{\prime}, \text { act a } t\right)}
$$

Reflexive transitive closure

Zero or more small steps:

The machine halts if it ends up in a configuration c for which there is no c^{\prime} such that $c \longrightarrow c^{\prime}$.

The machine's result

- The machine is started in state s_{0}.
- The head is initially over the left-most square.
- The tape initially contains a string of characters from the input alphabet Σ (followed by blanks).
- If the machine halts with the head in the left-most square, then the result consists of the contents of the tape, up to the last non-blank symbol.

The machine's result

A relation between List Σ and List Γ :

$$
\begin{gathered}
\left(s_{0},[], x s\right) \longrightarrow_{\star}^{\star}(s,[], r s) \quad \nexists c .(s,[], r s) \longrightarrow c \\
\text { remove } r s=y s \\
x s \Downarrow y s
\end{gathered}
$$

Removing blanks

The function remove removes all trailing blanks:

```
remove }\in\mathrm{ List }\Gamma->\mathrm{ List }
remove [] = []
remove (x:: xs) = cons' x (remove xs)
cons' }\in\Gamma->\mathrm{ List }\Gamma->\mathrm{ List }
cons' }\sqcup[]=[
cons' x xs = x :: xs
```


Quiz

Which properties does \Downarrow satisfy?

- Is it deterministic (for every Turing machine)?

$$
\begin{aligned}
& \forall x s \in \text { List } \Sigma . \forall y s, z s \in \operatorname{List} \Gamma . \\
& x s \Downarrow y s \wedge x s \Downarrow z s \Rightarrow y s=z s
\end{aligned}
$$

- Is it total (for every Turing machine)?

$$
\forall x s \in \operatorname{List} \Sigma . \exists y s \in \operatorname{List} \Gamma . x s \Downarrow y s
$$

The machine's partial function

The semantics as a partial function:

$$
\begin{aligned}
& \llbracket-\rrbracket \in \forall t m \in T M . \text { List } \Sigma_{t m} \rightharpoonup \text { List } \Gamma_{t m} \\
& \llbracket t m \rrbracket x s=y s \text { if } x s \Downarrow_{t m} y s
\end{aligned}
$$

An example

An example

- Input alphabet: $\{0,1\}$.
- Tape alphabet: $\{0,1, \underline{0}, \underline{1}, \sqcup\}$.
- States: $\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$.
- Initial state: s_{0}.

Transition function

Quiz

What is the result of running this TM with 0101 as the input string?

- No result
- 0000
- 1111
- 0101
- 1010
- $\underline{0} 101$
- 1010

Accepting
states

Accepting states

Turing machines with accepting states:
S is a finite set $\quad s_{0} \in S \quad A \subseteq S$
Σ is a finite set $\quad \sqcup \notin \Sigma$
Γ is a finite set $\Sigma \cup\{\sqcup\} \subseteq \Gamma$ $\delta \in S \times \Gamma \rightharpoonup S \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$
$\left(S, s_{0}, A, \Sigma, \Gamma, \delta\right) \in T M$

Is the string accepted?

A relation on List Σ :

$$
\frac{\left(s_{0},[], x s\right) \longrightarrow^{\star}(s, t) \quad \nexists c .(s, t) \longrightarrow c}{s \in A} \text { Accept xs}
$$

Is the string rejected?

A relation on List Σ :

$$
\frac{\left(s_{0},[], x s\right) \longrightarrow \longrightarrow^{\star}(s, t) \quad \nexists c .(s, t) \longrightarrow c}{s \notin A} \text { Reject xs}
$$

Note that if the TM fails to halt, then the string is neither accepted nor rejected.

An example

- Input alphabet: $\{1\}$.
- Tape alphabet: $\{1, \sqcup\}$.
- States: $\left\{s_{0}, s_{1}\right\}$.
- Initial state: s_{0}.
- Accepting states: $\left\{s_{0}\right\}$.

Transition function

Transition function

- Quiz: Which strings are accepted by this Turing machine?

Variants

Variants

Equivalent (in some sense) variants:

- Possibility to stay put.
- A tape without a left end.
- Multiple tapes.
- Only two symbols, other than the blank one.

Representing
 inductively
 defined sets

Natural numbers

One method:

$$
\begin{aligned}
& \ulcorner-\urcorner \in \mathbb{N} \rightarrow \text { List }\{1\} \\
& \ulcorner\text { zero }\urcorner=[] \\
& \ulcorner\text { suc } n\urcorner=1::\ulcorner n\urcorner
\end{aligned}
$$

Natural numbers

Another method (for $z \neq s$):

$$
\begin{aligned}
& \ulcorner-\urcorner \in \mathbb{N} \rightarrow \text { List }\{z, s\} \\
& \ulcorner\text { zero }\urcorner=z::[] \\
& \ulcorner\operatorname{suc} n\urcorner=s::\ulcorner n\urcorner
\end{aligned}
$$

Lists

Assume that A can be represented using a function $\left\ulcorner\right.$ _ ${ }^{\prime} \in A \rightarrow$ List Σ which satisfies the following properties:

- It is injective.
- There is a function

$$
\text { split } \in \text { List } \Sigma \rightarrow \text { List } \Sigma \times \text { List } \Sigma
$$

such that, for any $x \in A$, xs \in List Σ,

$$
\text { split }(\ulcorner x\urcorner+x s)=(\ulcorner x\urcorner, x s) \text {. }
$$

Lists

Assume that A can be represented using a function $\left\ulcorner\right.$ _ ${ }^{\prime} \in A \rightarrow$ List Σ which satisfies the following properties:

- It is injective.
- There is a function

$$
\text { split } \in \text { List } \Sigma \rightarrow \text { List } \Sigma \times \text { List } \Sigma
$$

such that, for any $x \in A, x s \in \operatorname{List} \Sigma$,

$$
\text { split }(\ulcorner x\urcorner+x s)=(\ulcorner x\urcorner, x s) \text {. }
$$

Note that split can only be defined for one of the presented methods for representing natural numbers.

Lists

Representation of List A (for $n \neq c$):

$$
\begin{aligned}
& \ulcorner-\urcorner \in \operatorname{List} A \rightarrow \operatorname{List}(\Sigma \cup\{n, c\}) \\
& \ulcorner[]\urcorner\urcorner=n::[] \\
& \ulcorner x:: x s\urcorner=c::\ulcorner x\urcorner+\ulcorner x s\urcorner
\end{aligned}
$$

This function also satisfies the given properties.

Quiz

Let n and z both stand for 0 , and let s and
c both stand for 1 . Which list of natural numbers does 11110101110100 stand for?

- None
- $[3,0,2]$
- $[3,0,2,0]$
- $[3,2,0]$
- $[4,1,3,1]$
- $[4,1,3,1,0]$

Turing-

computability

Turing-computable functions

Assume that we have methods for representing members of the sets A and B as elements of List Σ, where Σ is a finite set.

A partial function $f \in A \rightharpoonup B$ is Turing-computable if there is a Turing machine $t m$ such that:

- $\Sigma_{t m}=\Sigma$.
- $\forall a \in A . \llbracket t m \rrbracket\ulcorner a\urcorner=\ulcorner f a\urcorner$.

Languages

- A language over an alphabet Σ is a subset of List Σ.

Turing-decidable

A language L over Σ is Turing-decidable if there is a Turing machine $t m$ such that:

- $\Sigma_{t m}=\Sigma$.
- $\forall x s \in$ List Σ. if $x s \in L$ then Accept ${ }_{t m}$ xs.
- $\forall x s \in$ List Σ. if $x s \notin L$ then Reject ${ }_{t m} x s$.

Turing-recognisable

A language L over Σ is Turing-recognisable if there is a Turing machine $t m$ such that:

- $\Sigma_{t m}=\Sigma$.
- $\forall x s \in$ List Σ. $x s \in L$ iff Accept $_{t m} x s$.

Summary

- A comment about types.
- Rice's theorem.
- Turing machines:
- Abstract syntax.
- Operational semantics.
- Variants.
- Representing inductively defined sets.
- Turing-computability.

