Lecture
 Models of Computation (DIT310, TDA184)

Nils Anders Danielsson

2016-11-21

Today

- X-computability.
- A self-interpreter for χ.
- Reductions.
- More problems that are or are not computable.
- Rice's theorem.

computability

X-computable functions

Assume that we have methods for representing members of the sets A and B as closed χ expressions.

A partial function $f \in A \rightharpoonup B$ is χ-computable if there is a closed expression e such that:

- $\forall a \in A$.
if $f a$ is defined then $e^{\ulcorner } a^{\urcorner} \Downarrow\left\ulcorner f a^{\urcorner}\right.$.
- $\forall a \in A, v \in \operatorname{Exp}$.
if $e^{\ulcorner } a^{\urcorner} \Downarrow v$ then $f a$ is defined and
$v=\ulcorner f a\urcorner$.

X-computable functions

A special case:
A (total) function $f \in A \rightarrow B$ is χ-computable if there is a closed expression e such that:

$$
\forall a \in A . e^{\ulcorner a\urcorner} \Downarrow\ulcorner f a\urcorner .
$$

An alternative characterisation

- Define CExp $=\{p \in \operatorname{Exp} \mid p$ is closed $\}$.
- The semantics as a partial function:

$$
\begin{aligned}
& \llbracket-\rrbracket \in C E x p \rightharpoonup C E x p \\
& \llbracket p \rrbracket=v \text { if } p \Downarrow v
\end{aligned}
$$

- $f \in A \rightharpoonup B$ is χ-computable iff

$$
\exists e \in C E x p . \forall a \in A . \llbracket e\ulcorner a\urcorner \rrbracket=\ulcorner f a\urcorner .
$$

Quiz

What would go "wrong" if we decided to represent closed χ expressions in the following way?
A closed χ expression is represented by True() if it terminates, and by False() otherwise.

Representation

- The choice of representation is important.
- In this course (unless otherwise noted or inapplicable): The "standard" representation.

Examples

- Addition of natural numbers is χ-computable:

$$
\begin{aligned}
& a d d \in \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\
& \operatorname{add}(m, n)=m+n
\end{aligned}
$$

- The intensional halting problem is not χ-computable:

$$
\begin{aligned}
& \text { halts } \in C E \operatorname{Exp} \rightarrow \text { Bool } \\
& \text { halts } p=\text { if } p \text { terminates then true else false }
\end{aligned}
$$

- The semantics $\llbracket _\rrbracket$ is computable.

Self-

interpreter

Self-interpreter

Goal: Define eval $\in C E x p$ satisfying:

- $\forall e, v \in C E x p$, if $e \Downarrow v$ then eval $\ulcorner e\urcorner \Downarrow\ulcorner v\urcorner$.
- $\forall e, v^{\prime} \in C E x p$, if eval $\ulcorner e\urcorner \Downarrow v^{\prime}$ then there is some v such that $e \Downarrow v$ and $v^{\prime}=\ulcorner v\urcorner$.

Or: $\forall e \in C E x p . \llbracket e v a l\ulcorner e\urcorner \rrbracket=\ulcorner\llbracket e \rrbracket\urcorner$.

Self-interpreter

rec eval $=\lambda e$. case e of \{...

Self-interpreter

lambda $x e \Downarrow$ lambda $x e$
$\operatorname{Lambda}(x, e) \rightarrow \operatorname{Lambda}(x, e)$

Self-interpreter

$$
\frac{e_{1} \Downarrow \text { lambda } x e \quad e_{2} \Downarrow v_{2} \quad e\left[x \leftarrow v_{2}\right] \Downarrow v}{\text { apply } e_{1} e_{2} \Downarrow v}
$$

Apply $\left(e_{1}, e_{2}\right) \rightarrow$ case eval e_{1} of
$\left\{\operatorname{Lambda}(x, e) \rightarrow \operatorname{eval}\left(\right.\right.$ subst $x\left(\right.$ eval $\left.\left.e_{2}\right) e\right)$ \}

Exercise: Define subst.

Self-interpreter

$$
\frac{e[x \leftarrow \operatorname{rec} x e] \Downarrow v}{\operatorname{rec} x e \Downarrow v}
$$

$\operatorname{Rec}(x, e) \rightarrow$ eval (subst $x \operatorname{Rec}(x, e) e)$

Self-interpreter

$$
\frac{e s \Downarrow^{\star} v s}{\text { const } c e s \Downarrow \text { const } c v s}
$$

Const $(c$, es $) \rightarrow$ Const $(c$, map eval es $)$
Exercise: Define map.

Self-interpreter

$$
\begin{aligned}
& e \Downarrow \text { const } c \text { vs Lookup } c \text { bs } x s e^{\prime} \\
& e^{\prime}[x s \leftarrow v s] \mapsto e^{\prime \prime} \quad e^{\prime \prime} \Downarrow v \\
& \text { case } e b s \Downarrow v
\end{aligned}
$$

Case $(e, b s) \rightarrow$ case eval e of
$\{$ Const $(c, v s) \rightarrow$ case lookup c bs of $\left\{\operatorname{Pair}\left(x s, e^{\prime}\right) \rightarrow\right.$ eval (substs xs vs $\left.e^{\prime}\right)$ \} \}

Exercise: Define lookup and substs.

Self-interpreter

rec $e v a l=\lambda e$. case e of
$\{\operatorname{Lambda}(x, e) \rightarrow \operatorname{Lambda}(x, e)$
; Apply $\left(e_{1}, e_{2}\right) \rightarrow$ case eval e_{1} of
$\left\{\operatorname{Lambda}(x, e) \rightarrow\right.$ eval $\left(\right.$ subst $x\left(\right.$ eval $\left.\left.\left.e_{2}\right) e\right)\right\}$
$; \operatorname{Rec}(x, e) \rightarrow$ eval (subst $x \operatorname{Rec}(x, e) e)$
; Const $(c, e s) \rightarrow$ Const $(c$, map eval es)
; Case $(e, b s) \rightarrow$ case eval e of
$\{$ Const $(c, v s) \rightarrow$ case lookup c bs of $\left\{\operatorname{Pair}\left(x s, e^{\prime}\right) \rightarrow\right.$ eval (substs xs vs $\left.\left.e^{\prime}\right)\right\}$ \} \}
Note: subst, map, lookup and substs are meta-variables that stand for (closed) expressions.

Is the following partial function
χ-computable?

$$
\begin{aligned}
& \text { halts } \in C E x p \rightharpoonup \text { Bool } \\
& \text { halts } p=
\end{aligned}
$$

if p terminates then true else undefined

X-decidable

A function $f \in A \rightarrow$ Bool is χ-decidable if it is χ-computable. If not, then it is χ-undecidable.

X-semi-decidable

A function $f \in A \rightarrow$ Bool is χ-semi-decidable if there is a closed expression e such that, for all $a \in A$:

- If $f a=$ true then $e\ulcorner a\urcorner \Downarrow\ulcorner$ true .
- If $f a=$ false then $\left.e^{\ulcorner } a\right\urcorner$ does not terminate.

The halting problem is semi-decidable

The halting problem:
halts \in CExp \rightarrow Bool
halts $p=$ if p terminates then true else false
A program witnessing the semi-decidability:

$$
\lambda p .\left(\lambda_{-} . \operatorname{True}()\right)(\operatorname{eval} p)
$$

Reductions

Reductions (one variant)

A χ-reduction of $f \in A \rightharpoonup B$ to $g \in C \rightharpoonup D$ consists of a proof showing that, if g is χ-computable, then f is χ-computable.

Reductions

- If f is reducible to g, and f is not computable, then g is not computable.
- Last week we proved that the halting problem is undecidable by reducing another problem to it.

More
 (un)decidable
 problems

Semantic equality

- Are two closed χ expressions semantically equal?

$$
\begin{aligned}
& \text { equal } \in C E x p \times C E x p \rightarrow \text { Bool } \\
& \text { equal }\left(e_{1}, e_{2}\right)= \\
& \quad \text { if } \llbracket e_{1} \rrbracket=\llbracket e_{2} \rrbracket \text { then true else false }
\end{aligned}
$$

- The halting problem reduces to this one:

$$
\text { halts }=\lambda p . \operatorname{not}(\text { equal } \operatorname{Pair}(p,\ulcorner\operatorname{rec} x=x\urcorner))
$$

Pointwise equality

- Pointwise equality:

$$
\begin{aligned}
& \text { pointwise-equal } \in C E x p \times C E x p \rightarrow \text { Bool } \\
& \text { pointwise-equal }\left(e_{1}, e_{2}\right)= \\
& \quad \text { if } \forall e \in C E x p . \llbracket e_{1} e \rrbracket=\llbracket e_{2} e \rrbracket \\
& \text { then true else false }
\end{aligned}
$$

- The previous problem reduces to this one:

$$
\begin{aligned}
& \text { equal }=\lambda p \text {. case } p \text { of } \\
& \left\{\text { Pair }\left(e_{1}, e_{2}\right) \rightarrow\right. \\
& \text { pointwise-equal } \\
& \text { Pair }\left(\text { Lambda }\left(\ulcorner x\urcorner, e_{1}\right),\right. \\
& \left.\quad \operatorname{Lambda}\left(\ulcorner x\urcorner, e_{2}\right)\right)
\end{aligned}
$$

Termination in n steps

- Termination in n steps:

$$
\begin{aligned}
& \text { terminates-in } \in C E x p \times \mathbb{N} \rightarrow \text { Bool } \\
& \text { terminates-in }(e, n)=
\end{aligned}
$$

$$
\text { if } \exists p \in e \Downarrow v .|p| \leq n \text { then true else false }
$$

$|p|$: The number of rules in the derivation tree.

- Decidable: We can define a variant of the self-interpreter that tries to evaluate e but stops if more than n rules are needed.

Representation

- How do we represent a χ-computable function?
- By the representation of one of the closed expressions witnessing the computability of the function.

Quiz

Is the following problem χ-decidable for
 $A=$ Bool? What if $A=\mathbb{N}$?

Let Fun $=\{f \in A \rightarrow$ Bool $\mid f$ is χ-computable $\}$.
pointwise-equal ${ }^{\prime} \in$ Fun \times Fun \rightarrow Bool
pointwise-equal $(f, g)=$
if $\forall a \in A . f a=g a$ then true else false

Hint: Use eval or terminates-in.

Pointwise equality of computable functions in Bool \rightarrow Bool

- The function pointwise-equal ${ }^{\prime}$ is decidable.
- Implementation:

$$
\begin{aligned}
& \text { pointwise-equal }{ }^{\prime}=\lambda p \text {. case } p \text { of } \\
& \{\operatorname{Pair}(f, g) \rightarrow \\
& \text { and }\left(\text { equal }_{\text {Bool }}(\text { eval } \operatorname{Apply}(f, \operatorname{True}()))\right. \\
& \text { (eval Apply }(g \text {, True() }) \text {)) } \\
& \text { equal }_{\text {Bool }}(\text { eval } \operatorname{Apply}(f \text {, False(}())) \\
& \text { (eval Apply }(g \text {, False(}) \text {))) }
\end{aligned}
$$

\}

Pointwise equality of computable functions in $\mathbb{N} \rightarrow$ Bool

- The function pointwise-equal ${ }^{\prime}$ is undecidable.
- The halting problem reduces to it:

$$
\begin{aligned}
& \text { halts }=\lambda p . \text { not }\left(\text { pointwise-equal }{ }^{\prime}\right. \\
& \left\ulcorner\lambda n . \text { terminates-in Pair }(\llcorner\text { code } p\lrcorner n){ }^{\urcorner}\right. \\
& \left\ulcorner\lambda_{_} \text {. False }()^{\urcorner}\right)
\end{aligned}
$$

Quiz

Is the following function χ-computable?

optimise $\in C E x p \rightarrow$ CExp
optimise $e=$
some optimally small expression with the same semantics as e

Size: The number of constructors in the abstract syntax (Exp, Br, List, not Var or Const).

Full employment theorem
 for compiler writers

- An optimally small non-terminating expression is equal to rec $x=x$ (for some x).
- The halting problem reduces to this one:

$$
\text { halts }=\lambda p . \text { case optimise } p \text { of }
$$ $\{\operatorname{Rec}(-, e) \rightarrow$ case e of

$$
\{\operatorname{Var}(-) \quad \rightarrow \text { True }()
$$

$$
; \operatorname{Rec}\left(-,{ }_{-}\right) \rightarrow \text { False }()
$$

$$
;
$$

Computable real numbers

- Computable reals can be defined in many ways.
- One example, using signed digits:

$$
\begin{aligned}
& \text { Interval }= \\
& \quad\{f \in \mathbb{N} \rightarrow\{-1,0,1\} \mid f \text { is } \chi \text {-computable }\} \\
& \llbracket-\rrbracket \in \text { Interval } \rightarrow[-1,1] \\
& \llbracket f \rrbracket=\sum_{i=0}^{\infty} f i \cdot 2^{-i-1}
\end{aligned}
$$

- Why signed digits? Try computing the first digit of $0.00000 \ldots+0.11111 \ldots$ (in binary notation).

Is a computable real number equal to zero?

- Is a computable real number equal to zero?

$$
\begin{aligned}
& \text { is-zero } \in \text { Interval } \rightarrow \text { Bool } \\
& \text { is-zero } x=\text { if } \llbracket x \rrbracket=0 \text { then true else false }
\end{aligned}
$$

- The halting problem reduces to this one:

$$
\text { halts }=\lambda p . \text { not }(\text { is-zero }\ulcorner\lambda n .
$$

case terminates-in Pair $\left(\left\llcorner\right.\right.$ code $\left.p_{\lrcorner}, n\right)$ of
$\{$ True ()\rightarrow One()
; False() \rightarrow Zero()
$\}^{\urcorner}$)

Undecidable problems

- A list on Wikipedia.
- A list on MathOverflow.

$$
\begin{aligned}
& \text { Rice's } \\
& \text { theorem }
\end{aligned}
$$

Rice's theorem

Assume that $P \in C E x p \rightarrow$ Bool satisfies the following properties:

- P is non-trivial:

There are expressions $e_{\text {true }}, e_{\text {false }} \in C E x p$ satisfying $P e_{\text {true }}=$ true and $P e_{\text {false }}=$ false.

- P respects pointwise semantic equality:

$$
\begin{aligned}
& \forall e_{1}, e_{2} \in C E x p . \\
& \text { if } \forall e \in C E x p . \llbracket e_{1} e \rrbracket=\llbracket e_{2} e \rrbracket \text { then } \\
& \quad P e_{1}=P e_{2}
\end{aligned}
$$

Then P is χ-undecidable.

Rice's theorem

The halting problem reduces to P :
halts $=\lambda e$. case $P^{\ulcorner } \lambda_{-}$. rec $\left.x=x\right\urcorner$ of
$\{$ False ()\rightarrow

$$
P\left\ulcorner\lambda x .\left(\lambda_{-} . e_{\text {true }} x\right)\left(e^{\ulcorner v a l}{ }_{\llcorner } \operatorname{code} e_{\lrcorner}\right)\right\urcorner
$$

; True() \rightarrow

$$
\left.\operatorname{not}\left(P^{\ulcorner } \lambda x .\left(\lambda_{-} \cdot e_{\text {false }} x\right)\left(e v a l_{\llcorner } \operatorname{code} e_{\lrcorner}\right)\right\urcorner\right)
$$

$$
\}
$$

Quiz

Which of the following problems are χ-decidable?

- Is $e \in C E x p$ an implementation of the successor function for natural numbers?
- Is $e \in C E x p$ syntactically equal to λn. Succ (n) ?

Summary

- X-computability.
- A self-interpreter for χ.
- Reductions.
- More problems that are or are not computable.
- Rice's theorem.

$$
\begin{aligned}
& \text { Please give } \\
& \text { any kind of } \\
& \text { feedback on } \\
& \text { the course }
\end{aligned}
$$

