### Lecture Models of Computation (DIT310, TDA184)

Nils Anders Danielsson

2016-11-21



- ► X-computability.
- A self-interpreter for  $\chi$ .
- Reductions.
- More problems that are or are not computable.
- ▶ Rice's theorem.



# computability

#### X-computable functions

Assume that we have methods for representing members of the sets A and B as closed  $\chi$  expressions.

A partial function  $f \in A \rightarrow B$  is  $\chi$ -computable if there is a closed expression e such that:

X-computable functions

A special case:

A (total) function  $f \in A \rightarrow B$  is  $\chi$ -computable if there is a closed expression e such that:

$$\blacktriangleright \forall a \in A. \ e \ulcorner a \urcorner \Downarrow \ulcorner f a \urcorner.$$

#### An alternative characterisation

- Define  $CExp = \{ p \in Exp \mid p \text{ is closed} \}.$
- ▶ The semantics as a partial function:

$$\llbracket \_ \rrbracket \in CExp \rightharpoonup CExp \\ \llbracket p \rrbracket = v \text{ if } p \Downarrow v$$

•  $f \in A \rightarrow B$  is  $\chi$ -computable iff

 $\exists e \in CExp. \ \forall a \in A. \llbracket e \ulcorner a \urcorner \rrbracket = \ulcorner f a \urcorner.$ 

# What would go "wrong" if we decided to represent closed $\chi$ expressions in the following way?

A closed  $\chi$  expression is represented by True() if it terminates, and by  ${\rm False}()$  otherwise.

- The choice of representation is important.
- In this course (unless otherwise noted or inapplicable): The "standard" representation.



• Addition of natural numbers is  $\chi$ -computable:

 $\begin{array}{l} add \in \mathbb{N} \times \mathbb{N} \to \mathbb{N} \\ add \ (m,n) = m+n \end{array}$ 

 The intensional halting problem is not *χ*-computable:

> $halts \in CExp \rightarrow Bool$ halts p = if p terminates then true else false

▶ The semantics [[\_]] is computable.

### Self-

## interpreter

Goal: Define  $eval \in CExp$  satisfying:

▶ 
$$\forall e, v \in CExp,$$
  
if  $e \Downarrow v$  then  $eval \ulcorner e \urcorner \Downarrow \ulcorner v \urcorner.$ 

▶ 
$$\forall e, v' \in CExp$$
,  
if  $eval \ e \ v'$  then there is some  $v$  such that  
 $e \Downarrow v$  and  $v' = \ v'$ .

Or:  $\forall e \in CExp. [[eval \ e \ ]] = \ [[e]] \ ].$ 

### $\begin{array}{l} \mathbf{rec} \ eval = \lambda \ e. \ \mathbf{case} \ e \ \mathbf{of} \\ \{ \dots \\ \} \end{array}$

lambda  $x \, \, e \Downarrow$ lambda  $x \, \, e$ 

 $\mathsf{Lambda}(x, e) \to \mathsf{Lambda}(x, e)$ 

$$\underbrace{ e_1 \Downarrow \mathsf{lambda} \ x \ e}_{\mathsf{apply} \ e_1 \ \psi_2} \quad e \ [x \leftarrow v_2] \Downarrow v \\ \mathsf{apply} \ e_1 \ e_2 \Downarrow v \\ \end{aligned}$$

$$\begin{array}{l} \mathsf{Apply}(e_1,e_2) \to \mathbf{case} \ eval \ e_1 \ \mathbf{of} \\ \{\mathsf{Lambda}(x,e) \to eval \ (subst \ x \ (eval \ e_2) \ e) \\ \} \end{array}$$

Exercise: Define *subst*.

### Self-interpreter

$$\frac{e \ [x \leftarrow \mathsf{rec} \ x \ e] \Downarrow v}{\mathsf{rec} \ x \ e \Downarrow v}$$

 $\mathsf{Rec}(x, e) \to eval \ (subst \ x \ \mathsf{Rec}(x, e) \ e)$ 

### Self-interpreter

 $\frac{es \Downarrow^{\star} vs}{\operatorname{const} c \ es \Downarrow \operatorname{const} c \ vs}$ 

 $Const(c, es) \rightarrow Const(c, map \ eval \ es)$ 

Exercise: Define map.

### $\begin{array}{cccc} e \Downarrow \mathsf{const} \ c \ vs & Lookup \ c \ bs \ xs \ e' \\ e' \ [xs \leftarrow vs] \mapsto e'' & e'' \Downarrow v \\ \hline \mathsf{case} \ e \ bs \Downarrow v \end{array}$

$$\begin{aligned} \mathsf{Case}(e, bs) &\to \mathbf{case} \ eval \ e \ \mathbf{of} \\ \{ \mathsf{Const}(c, vs) \to \mathbf{case} \ lookup \ c \ bs \ \mathbf{of} \\ \{ \mathsf{Pair}(xs, e') \to eval \ (substs \ xs \ vs \ e') \\ \} \end{aligned}$$

Exercise: Define lookup and substs.

### Self-interpreter

rec  $eval = \lambda e$ . case e of {Lambda $(x, e) \rightarrow$ Lambda(x, e); Apply $(e_1, e_2) \rightarrow case \ eval \ e_1 \ of$ {Lambda $(x, e) \rightarrow eval (subst x (eval e_2) e)$ } ;  $\operatorname{Rec}(x, e) \longrightarrow eval \ (subst \ x \ \operatorname{Rec}(x, e) \ e)$ ;  $Const(c, es) \rightarrow Const(c, map eval es)$ ;  $Case(e, bs) \rightarrow case \ eval \ e \ of$  $\{ Const(c, vs) \rightarrow case \ lookup \ c \ bs \ of \}$  $\{\operatorname{Pair}(xs, e') \rightarrow eval \ (substs \ xs \ vs \ e')\}$ 

Note: *subst*, *map*, *lookup* and *substs* are meta-variables that stand for (closed) expressions.



### Is the following partial function $\chi$ -computable?

$$halts \in CExp \rightarrow Bool$$

$$halts \ p =$$
if p terminates then true else undefined

#### X-decidable

A function  $f \in A \rightarrow Bool$  is  $\chi$ -decidable if it is  $\chi$ -computable. If not, then it is  $\chi$ -undecidable.

#### X-semi-decidable

A function  $f \in A \rightarrow Bool$  is  $\chi$ -semi-decidable if there is a closed expression e such that, for all  $a \in A$ :

- ▶ If f a =true then  $e \ulcorner a \urcorner \Downarrow \ulcorner$  true  $\urcorner$ .
- ▶ If f a = false then  $e \ulcorner a \urcorner$  does not terminate.

The halting problem:

 $halts \in CExp \rightarrow Bool$ halts p = if p terminates then true else false

A program witnessing the semi-decidability:

 $\lambda p. \ (\lambda \_. \operatorname{True}()) \ (eval \ p)$ 

### Reductions

#### Reductions (one variant)

A  $\chi$ -reduction of  $f \in A \rightarrow B$  to  $g \in C \rightarrow D$ consists of a proof showing that, if g is  $\chi$ -computable, then f is  $\chi$ -computable.

- ▶ If *f* is reducible to *g*, and *f* is not computable, then *g* is not computable.
- Last week we proved that the halting problem is undecidable by reducing another problem to it.

# More (un)decidable problems

### Semantic equality

Are two closed  $\chi$  expressions semantically equal?

$$\begin{array}{l} equal \in \textit{CExp} \times \textit{CExp} \rightarrow \textit{Bool} \\ equal \ (e_1, e_2) = \\ \quad \mathbf{if} \ \llbracket e_1 \rrbracket = \llbracket e_2 \rrbracket \ \mathbf{then} \ \mathbf{true} \ \mathbf{else} \ \mathbf{false} \end{array}$$

▶ The halting problem reduces to this one:

$$halts = \lambda p. not (equal \operatorname{Pair}(p, \lceil \operatorname{rec} x = x \rceil))$$

### Pointwise equality

Pointwise equality:

 $\begin{array}{l} pointwise-equal \in CExp \times CExp \rightarrow Bool\\ pointwise-equal \ (e_1, e_2) = \\ \mathbf{if} \ \forall \ e \in CExp. \ \llbracket e_1 \ e \rrbracket = \llbracket e_2 \ e \rrbracket\\ \mathbf{then true \ else \ false} \end{array}$ 

The previous problem reduces to this one:

$$\begin{array}{l} equal = \lambda \, p. \ \mathbf{case} \ p \ \mathbf{of} \\ \{ \mathsf{Pair}(e_1, e_2) \rightarrow \\ pointwise-equal \\ \mathsf{Pair}(\mathsf{Lambda}(\ulcorner x \urcorner, e_1), \\ \mathsf{Lambda}(\ulcorner x \urcorner, e_2)) \\ \} \end{array}$$

#### Termination in *n* steps

▶ Termination in *n* steps:

 $\begin{array}{l} terminates{-in \in CExp \times \mathbb{N} \to Bool} \\ terminates{-in (e, n) =} \\ \mathbf{if} \exists \ p \in e \Downarrow v. \mid p \mid \leq n \ \mathbf{then \ true \ else \ false} \end{array}$ 

|p|: The number of rules in the derivation tree.

Decidable: We can define a variant of the self-interpreter that tries to evaluate e but stops if more than n rules are needed.

- How do we represent a  $\chi$ -computable function?
- By the representation of one of the closed expressions witnessing the computability of the function.

Is the following problem  $\chi$ -decidable for A = Bool? What if  $A = \mathbb{N}$ ? Let  $Fun = \{f \in A \rightarrow Bool \mid f \text{ is } \chi\text{-computable}\}.$   $pointwise\text{-equal'} \in Fun \times Fun \rightarrow Bool$  pointwise-equal' (f, g) =if  $\forall a \in A$ . f a = g a then true else false

Hint: Use eval or terminates-in.

Pointwise equality of computable functions in  $Bool \rightarrow Bool$ 

The function *pointwise-equal'* is decidable.
Implementation:

 $\begin{array}{l} pointwise-equal' = \lambda \, p. \ \mathbf{case} \ p \ \mathbf{of} \\ \{ \mathsf{Pair}(f,g) \rightarrow \\ and \ (equal_{Bool} \ (eval \ \mathsf{Apply}(f,\mathsf{True}())) \\ (eval \ \mathsf{Apply}(g,\mathsf{True}()))) \\ (equal_{Bool} \ (eval \ \mathsf{Apply}(f,\mathsf{False}())) \\ (eval \ \mathsf{Apply}(g,\mathsf{False}()))) \\ \} \end{array}$ 

Pointwise equality of computable functions in  $\mathbb{N} \rightarrow Bool$ 

The function *pointwise-equal'* is undecidable.
The halting problem reduces to it:

$$\begin{aligned} halts &= \lambda \, p. \, not \, (pointwise-equal' \\ \lceil \, \lambda \, n. \, terminates-in \, \mathsf{Pair}(\_ code \, p \, \_, n) \, \rceil \\ \lceil \, \lambda \, \_. \, \mathsf{False}() \, \urcorner) \end{aligned}$$



#### Is the following function $\chi$ -computable?

$$optimise \in CExp \rightarrow CExp$$
  
 $optimise \ e =$   
some optimally small expression with  
the same semantics as  $e$ 

Size: The number of constructors in the abstract syntax (*Exp*, *Br*, *List*, not *Var* or *Const*).

### Full employment theorem for compiler writers

- ► An optimally small non-terminating expression is equal to rec x = x (for some x).
- ▶ The halting problem reduces to this one:

$$\begin{array}{l} halts = \lambda \, p. \ \mathbf{case} \ optimise \ p \ \mathbf{of} \\ \{ \mathsf{Rec}(\_, e) \rightarrow \mathbf{case} \ e \ \mathbf{of} \\ \{ \mathsf{Var}(\_) \ \rightarrow \mathsf{True}() \\ ; \mathsf{Rec}(\_, \_) \rightarrow \mathsf{False}() \\ ; \ \dots \\ \} \\ \end{array}$$

### Computable real numbers

- Computable reals can be defined in many ways.
- ▶ One example, using signed digits:

$$\begin{split} &Interval = \\ & \{f \in \mathbb{N} \to \{-1, 0, 1\} \mid f \text{ is } \chi\text{-computable} \} \\ & \llbracket - \rrbracket \in Interval \to [-1, 1] \\ & \llbracket f \rrbracket = \sum_{i=0}^{\infty} f \ i \cdot 2^{-i-1} \end{split}$$

► Why signed digits? Try computing the first digit of 0.000000... + 0.11111... (in binary notation).

### Is a computable real number equal to zero?

▶ Is a computable real number equal to zero?

 $is\text{-}zero \in Interval \rightarrow Bool$  $is\text{-}zero \ x = \mathbf{if} \ [\![x]\!] = 0 \mathbf{then true else false}$ 

▶ The halting problem reduces to this one:

$$\begin{split} halts &= \lambda \, p. \ not \ (is\text{-}zero \ \ \lambda \, n. \\ \textbf{case} \ terminates\text{-}in \ \textsf{Pair}(\ code \ p \ , n) \ \textbf{of} \\ & \{ \mathsf{True}() \rightarrow \textsf{One}() \\ & ; \ \textsf{False}() \rightarrow \textsf{Zero}() \\ & \} \urcorner) \end{split}$$

- ► A list on Wikipedia.
- ► A list on MathOverflow.

# Rice's theorem

#### Rice's theorem

Assume that  $P \in CExp \rightarrow Bool$  satisfies the following properties:

► *P* is non-trivial:

There are expressions  $e_{true}$ ,  $e_{false} \in CExp$ satisfying  $P \ e_{true} = true$  and  $P \ e_{false} = false$ .

► *P* respects pointwise semantic equality:

$$\label{eq:elements} \begin{array}{l} \forall \ e_1, e_2 \in \textit{CExp.} \\ \text{if} \ \forall \ e \in \textit{CExp.} \ \llbracket e_1 \ e \rrbracket = \llbracket e_2 \ e \rrbracket \ \text{then} \\ P \ e_1 = P \ e_2 \end{array}$$

Then *P* is  $\chi$ -undecidable.

The halting problem reduces to P:

$$\begin{array}{l} halts = \lambda \, e. \; \mathbf{case} \; P \ulcorner \lambda\_. \; \mathbf{rec} \; x = x \urcorner \; \mathbf{of} \\ \{ \mathsf{False}() \rightarrow & \\ P \ulcorner \lambda x. \; (\lambda\_. \; e_{\mathsf{true}} \; x) \; (eval \_ code \; e \_) \urcorner \\ ; \; \mathsf{True}() \rightarrow & \\ not \; (P \ulcorner \lambda x. \; (\lambda\_. \; e_{\mathsf{false}} \; x) \; (eval \_ code \; e \_) \urcorner ) \\ \} \end{array}$$



### Which of the following problems are $\chi$ -decidable?

- ► Is e ∈ CExp an implementation of the successor function for natural numbers?
- ▶ Is  $e \in CExp$  syntactically equal to  $\lambda n$ . Succ(n)?



- ► X-computability.
- A self-interpreter for  $\chi$ .
- Reductions.
- More problems that are or are not computable.
- ▶ Rice's theorem.

# Please give any kind of feedback on the course