Lecture Models of Computation (DIT310, TDA184)

Nils Anders Danielsson

2016-11-14

Today

χ , a small functional language:

- ▶ Concrete and abstract syntax.
- Operational semantics.
- ▶ Several variants of the halting problem.
- ▶ Representing inductively defined sets.

Concrete syntax

Concrete syntax

```
\begin{array}{ll} e ::= x \\ | & (e_1 \ e_2) \\ | & \lambda x. \ e \\ | & \mathsf{c}(e_1, ..., e_n) \\ | & \mathsf{case} \ e \ \mathsf{of} \ \{ \mathsf{c}_1(x_1, ..., x_n) \to e_1; ... \} \\ | & \mathsf{rec} \ x = e \end{array}
```

Variables (x) and constructors (c) are assumed to come from two disjoint, countably infinite sets.

Sometimes extra parentheses are used, and sometimes parentheses are omitted around applications: e_1 e_2 e_3 means $((e_1$ $e_2)$ $e_3)$.

Examples

χ	Haskell	
$\lambda x. e$	\x -> e	
True()	True	
Succ(n)	Succ n	
Cons(x,xs)	x : xs	
$\mathbf{rec}\ x = e$	let x = e in x	

Note: Haskell is typed and non-strict, χ is untyped and strict.

Another example

```
\chi:
   case e of \{\mathsf{Zero}() \to x; \mathsf{Succ}(n) \to y\}
Haskell:
   case e of
      Zero -> x
      Succ n \rightarrow y
```

And two more

```
rec add = \lambda m. \lambda n. case n of
    \{ \operatorname{\mathsf{Zero}}() \to m \}
    ; Succ(n) \rightarrow Succ(add \ m \ n)
\lambda m. rec add = \lambda n. case n of
    \{ \mathsf{Zero}() \rightarrow m \}
    : \mathsf{Succ}(n) \to \mathsf{Succ}(add\ n)
```

What is the value of the following expression?

```
 \begin{aligned} &(\mathbf{rec}\ foo = \lambda\ m.\ \lambda\ n.\ \mathbf{case}\ n\ \mathbf{of}\ \{\\ &\mathsf{Zero}() \ \to m;\\ &\mathsf{Succ}(n) \to \mathbf{case}\ m\ \mathbf{of}\ \{\\ &\mathsf{Zero}() \ \to \mathsf{Zero}();\\ &\mathsf{Succ}(m) \to foo\ m\ n\}\})\\ &\mathsf{Succ}(\mathsf{Succ}(\mathsf{Zero}()))\ \mathsf{Succ}(\mathsf{Zero}()) \end{aligned}
```

```
➤ Zero()➤ Succ(Succ(Zero()))➤ Succ(Succ(Succ(Zero())))
```

Abstract

syntax

Abstract syntax

$$\frac{x \in Var}{\mathsf{var}\ x \in Exp} \qquad \frac{e_1 \in Exp}{\mathsf{apply}\ e_1\ e_2 \in Exp}$$

$$\frac{x \in Var \quad e \in Exp}{\mathsf{lambda}\ x\ e \in Exp} \qquad \frac{x \in Var \quad e \in Exp}{\mathsf{rec}\ x\ e \in Exp}$$

Var: Assumed to be countably infinite.

Abstract syntax

$$\frac{c \in Const \qquad es \in List \ Exp}{\mathsf{const} \ c \ es \in Exp}$$

$$\frac{e \in Exp \qquad bs \in List \ Br}{\mathsf{case} \ e \ bs \in Exp}$$

$$\frac{c \in Const \qquad xs \in List \ Var \qquad e \in Exp}{\mathsf{branch} \ c \ xs \ e \in Br}$$

Const: Assumed to be countably infinite.

Operational

semantics

Operational semantics

- ▶ The binary relation \Downarrow relates *closed* expressions.
- ▶ An expression is closed if it has no free variables.
- $ightharpoonup e \Downarrow v$: e terminates with the value v.

Quiz

Which of the following expressions are closed?

- ▶ y
- $\rightarrow \lambda x. \lambda y. x$
- ▶ case x of $\{Cons(x, xs) \rightarrow x\}$
- ▶ case Succ(Zero()) of $\{Succ(x) \rightarrow x\}$
- ightharpoonup rec $f = \lambda x$. f

$$\overline{\mathsf{lambda}\ x\ e} \downarrow \mathsf{lambda}\ x\ e$$

$$\frac{e_1 \Downarrow \mathsf{lambda} \ x \ e \qquad e_2 \Downarrow v_2 \qquad e \ [x \leftarrow v_2] \Downarrow v}{\mathsf{apply} \ e_1 \ e_2 \Downarrow v}$$

$$\frac{e \ [x \leftarrow \mathsf{rec} \ x \ e] \Downarrow v}{\mathsf{rec} \ x \ e \ \Downarrow v}$$

Substitution

- ▶ $e[x \leftarrow e']$: Substitute e' for every *free* occurrence of x in e.
- ▶ To keep things simple: e' must be closed.
- ▶ If e' is not closed, then this definition is prone to *variable capture*.

Substitution

```
\begin{array}{l} \operatorname{var} x \; [x \leftarrow e'] = e' \\ \operatorname{var} y \; [x \leftarrow e'] = \operatorname{var} y \quad \text{ if } x \neq y \end{array}
```

apply
$$e_1 \ e_2 \ [x \leftarrow e'] =$$
 apply $(e_1 \ [x \leftarrow e']) \ (e_2 \ [x \leftarrow e'])$

$$\begin{array}{l} \mathsf{lambda} \ x \ e \ [x \leftarrow e'] = \mathsf{lambda} \ x \ e \\ \mathsf{lambda} \ y \ e \ [x \leftarrow e'] = \\ \mathsf{lambda} \ y \ (e \ [x \leftarrow e']) \quad \text{ if } x \neq y \end{array}$$

And so on...

Quiz

What is the result of

(rec
$$y = \mathbf{case} \ x \ \mathbf{of} \ \{ \mathbf{c}() \to x; \mathbf{d}(x) \to x \}) \ [x \leftarrow \lambda z. \ z]?$$

- ▶ rec y =case x of $\{c() \rightarrow x; d(x) \rightarrow x\}$
- ▶ rec y =case x of $\{c() \rightarrow x; d(x) \rightarrow \lambda z. z\}$
- ▶ rec $y = \mathbf{case} \ \lambda z$. z of $\{\mathsf{c}() \to \lambda z$. $z; \mathsf{d}(x) \to x\}$
- ▶ rec $y = \mathbf{case} \ \lambda z$. z of $\{\mathsf{c}() \to \lambda z$. $z; \mathsf{d}(\lambda z) \to x\}$
- ▶ rec y =case λz . z of $\{c() \rightarrow \lambda z$. z; $d(x) \rightarrow \lambda z$. $z\}$

An example

	nil ∜* nil	—— nil ↓ * nil
$\overline{lambda\ x\ (var\ x)\ \Downarrow}$ $lambda\ x\ (var\ x)$	$ {\text{const } c \text{ nil } \Downarrow} $ $ \text{const } c \text{ nil} $	

 $\mathsf{apply}\;(\mathsf{lambda}\;x\;(\mathsf{var}\;x))\;(\mathsf{const}\;c\;\mathsf{nil}) \Downarrow \mathsf{const}\;c\;\mathsf{nil}$

$$\begin{array}{cccc}
e \Downarrow \mathsf{const} & c & vs & Lookup & c & bs & xs & e' \\
e' & [xs \leftarrow vs] \mapsto e'' & e'' \Downarrow v \\
\hline
& \mathsf{case} & e & bs \Downarrow v
\end{array}$$

$$\frac{e \Downarrow \mathsf{const}\ c\ vs}{e'\ [xs \leftarrow vs\] \mapsto e'' \qquad e'' \ \Downarrow v} \\ \frac{e'\ [xs \leftarrow vs\] \mapsto e'' \qquad e'' \ \Downarrow v}{\mathsf{case}\ e\ bs \ \Downarrow v}$$

The first matching branch, if any:

$$\frac{e \Downarrow \mathsf{const}\ c\ vs \qquad Lookup\ c\ bs\ xs\ e'}{e'\ [xs \leftarrow vs\] \mapsto e'' \qquad e'' \ \Downarrow v} \\ \frac{e'\ [xs \leftarrow vs\] \mapsto e'' \qquad e'' \ \Downarrow v}{\mathsf{case}\ e\ bs \ \Downarrow v}$$

- $e [xs \leftarrow vs] \mapsto e' \text{ holds iff}$
 - $\begin{array}{l} \bullet \ \ \text{there is some} \ n \ \text{such that} \\ xs = \mathrm{cons} \ x_1 \ (... (\mathrm{cons} \ x_n \ \mathrm{nil})) \ \text{and} \\ vs = \mathrm{cons} \ v_1 \ (... (\mathrm{cons} \ v_n \ \mathrm{nil})), \ \text{and} \end{array}$
 - $\bullet \ e' = ((e \ [x_n \leftarrow v_n])...) \ [x_1 \leftarrow v_1].$

$$\frac{e \Downarrow \mathsf{const}\ c\ vs \qquad Lookup\ c\ bs\ xs\ e'}{e'\ [xs \leftarrow vs] \mapsto e'' \qquad e''\ \Downarrow v}$$

$$\mathsf{case}\ e\ bs \Downarrow v$$

$$\overline{e\ [\mathsf{nil} \leftarrow \mathsf{nil}] \mapsto e}$$

$$e \; [\operatorname{cons} \; x \; xs \leftarrow \operatorname{cons} \; v \; vs \,] \mapsto e' \; [\; x \leftarrow v \,]$$

 $e [xs \leftarrow vs] \mapsto e'$

Quiz

Which of the following sets are inhabited?

- ▶ case c() of $\{c() \rightarrow d(); c() \rightarrow c()\} \Downarrow c()$
- ▶ case c() of $\{c() \rightarrow d(); c() \rightarrow c()\} \Downarrow d()$
- ▶ case c() of $\{c(x) \rightarrow d(); c() \rightarrow d()\} \Downarrow d()$
- ► case Succ(False()) of ${Zero() \rightarrow True(); Succ(n) \rightarrow n} \Downarrow False()$
- ► case Succ(False()) of $\{Zero() \rightarrow True(); Succ() \rightarrow False()\}$ $\Downarrow False()$

Some properties

Deterministic

The semantics is deterministic: $e \Downarrow v_1$ and $e \Downarrow v_2$ imply $v_1 = v_2$.

Values

- ▶ An expression e is called a value if $e \Downarrow e$.
- ▶ Values can be characterised inductively:

- ▶ $Value\ e\ \mathsf{holds}\ \mathsf{iff}\ e\ \psi\ e.$
- ▶ If $e \Downarrow v$, then $Value\ v$.

There is a non-terminating expression

- ▶ The following program does not terminate: rec x (var x).
- ▶ Recall the rule for rec: $\frac{e \ [x \leftarrow \operatorname{rec} \ x \ e] \Downarrow v}{\operatorname{rec} \ x \ e \Downarrow v}.$
- ▶ Note that $\operatorname{var} x [x \leftarrow \operatorname{rec} x (\operatorname{var} x)] = \operatorname{rec} x (\operatorname{var} x).$
- ▶ Idea:

```
 \begin{array}{c} \operatorname{rec} x \; (\operatorname{var} \; x) & \to \\ \operatorname{var} \; x \; [x \leftarrow \operatorname{rec} \; x \; (\operatorname{var} \; x)] = \\ \operatorname{rec} \; x \; (\operatorname{var} \; x) & \to \\ \vdots & \end{array}
```

There is a non-terminating expression

▶ If the program did terminate, then there would be a *finite* derivation of the following form:

► Exercise: Prove more formally that this is impossible, using induction on the structure of the semantics.

The halting problem

There is no closed expression halts such that, for every closed expression p,

- ▶ $halts (\lambda x. p) \Downarrow True()$, if p terminates, and
- ▶ $halts(\lambda x. p) \Downarrow False()$, otherwise.

- ▶ Assume that *halts* can be defined.
- ▶ Define $terminv \in Exp \rightarrow Exp$:

```
\begin{array}{c} \textit{terminv } p = \mathbf{case} \; \textit{halts} \; (\lambda \, x. \; p) \; \mathbf{of} \\ & \{ \, \mathsf{True}() \, \rightarrow \mathsf{rec} \; x = x \\ & ; \, \mathsf{False}() \rightarrow \mathsf{Zero}() \\ & \} \end{array}
```

▶ For any closed expression p: terminv p terminates iff p does not terminate.

- Now consider the closed expression strange defined by $\mathbf{rec}\ p = terminv\ p$.
- ▶ We get a contradiction:

- ▶ Note that we apply *halts* to a program, not to the source code of a program.
- ▶ How can source code be represented?

Representing inductively defined sets

Natural numbers

One method:

- ▶ Notation: $\lceil n \rceil \in Exp$ represents $n \in \mathbb{N}$.
- ▶ Representation:

```
\lceil \mathsf{zero} \rceil = \mathsf{Zero}()
\lceil \mathsf{suc} \ n \rceil = \mathsf{Succ}(\lceil n \rceil)
```

Natural numbers

One method:

- ▶ Notation: $\lceil n \rceil \in Exp$ represents $n \in \mathbb{N}$.
- ▶ Representation:

```
\lceil \mathsf{zero} \rceil = \mathsf{Zero}()
\lceil \mathsf{suc} \ n \rceil = \mathsf{Succ}(\lceil n \rceil)
```

▶ Note that the concrete syntax should be interpreted as abstract syntax:

```
\lceil \operatorname{zero} \rceil = \operatorname{const} \underline{Zero} \operatorname{nil} 
\lceil \operatorname{suc} n \rceil = \operatorname{const} \underline{Succ} \operatorname{(cons} \lceil n \rceil \operatorname{nil)}
```

(For some distinct $\underline{Zero}, \underline{Succ} \in Const.$)

Lists

If elements in A can be represented, then elements in $List\ A$ can also be represented:

```
 \lceil \mathsf{nil} \rceil = \mathsf{Nil}() 
 \lceil \mathsf{cons} \ x \ xs \rceil = \mathsf{Cons}(\lceil x \rceil, \lceil xs \rceil)
```

Many inductively defined sets can be represented using constructor trees in analogous ways.

Variables, constants

- ► *Var*: Countably infinite.
- ▶ Thus each variable $x \in Var$ can be assigned a unique natural number $n \in \mathbb{N}$.
- ▶ Define $\lceil x \rceil = \lceil n \rceil$.
- ▶ Similarly for constants.

Source code

Example

- ▶ Concrete syntax: λx . Succ(x).
- Abstract syntax:

```
\mathsf{lambda}\ \underline{x}\ (\mathsf{const}\ \underline{Succ}\ (\mathsf{cons}\ (\mathsf{var}\ \underline{x})\ \mathsf{nil}))
```

(for some $\underline{x} \in Var$ and $\underline{Succ} \in Const$).

▶ Representation (concrete syntax):

```
\mathsf{Lambda}(\lceil \underline{x} \rceil, \\ \mathsf{Const}(\lceil \underline{Succ} \rceil, \mathsf{Cons}(\mathsf{Var}(\lceil \underline{x} \rceil), \mathsf{Nil}())))
```

▶ If \underline{x} and \underline{Succ} both correspond to zero:

```
\begin{aligned} \mathsf{Lambda}(\mathsf{Zero}(), \\ \mathsf{Const}(\mathsf{Zero}(), \\ \mathsf{Cons}(\mathsf{Var}(\mathsf{Zero}()), \mathsf{Nil}()))) \end{aligned}
```

Example

Representation (abstract syntax):

```
const Lambda (
  cons (const Zero nil) (
  cons (const Const (
    cons (const Zero nil) (
    cons (const Cons (
       cons (const Var (cons (const Zero nil) nil)) (
       cons (const Nil nil)
       nil)))
     nil)))
  nil))
```

Quiz

How is $\operatorname{rec} x = x$ represented? Assume that x corresponds to 1.

- ► Rec(X(), X())
- ightharpoonup Rec(X(), Var(X()))
- ightharpoonup Equals(Rec(X()), X())
- ▶ Rec(Succ(Zero()), Succ(Zero()))
- ▶ Rec(Succ(Zero()), Var(Succ(Zero())))
- ► Equals(Rec(Succ(Zero())), Succ(Zero()))

The halting problem,

take two

The intensional halting problem (with self-application)

There is no closed expression halts such that, for every closed expression p,

- ▶ $halts \lceil p \rceil \Downarrow True()$, if $p \lceil p \rceil$ terminates, and
- ▶ $halts \lceil p \rceil \Downarrow False()$, otherwise.

With self-application

- ▶ Assume that *halts* can be defined.
- ▶ Define the closed expression *terminv*:

```
terminv = \lambda p. \mathbf{ case } halts \ p \mathbf{ of }
\{ \mathsf{True}() \to \mathsf{rec } x = x \\ ; \mathsf{False}() \to \mathsf{Zero}() \\ \}
```

- ► For any closed expression *p*: terminv 「p ¬ terminates iff p ¬ p ¬ does not terminate.
- ► Thus $terminv \ ' terminv \ ' terminates$ iff $terminv \ ' terminv \ ' does not terminate.$

There is no closed expression halts such that, for every closed expression p,

- ▶ $halts \lceil p \rceil \Downarrow True()$, if p terminates, and
- ▶ $halts \lceil p \rceil \Downarrow False()$, otherwise.

- ▶ Assume that *halts* can be defined.
- ▶ If we can use *halts* to solve the previous variant of the halting problem, then we have found a contradiction.

- Exercise:
 - Define a closed expression code satisfying:
 - ► For any closed expression p, $code \lceil p \rceil \Downarrow \lceil p \rceil \rceil$.
- ▶ Define the closed expression halts' by $\lambda p. \ halts \ \mathsf{Apply}(p, code \ p).$

For any closed expression p:

```
\begin{array}{cccc} p & \text{$}^{} & \text{
```

For any closed expression p:

```
\begin{array}{ccc} p \ulcorner p \urcorner \text{ does not terminate} & \Rightarrow \\ halts \ulcorner p \ulcorner p \urcorner \urcorner & \Downarrow \mathsf{False}() & \Rightarrow \\ halts \mathsf{Apply}(\ulcorner p \urcorner, \ulcorner p \urcorner \urcorner) & \Downarrow \mathsf{False}() & \Rightarrow \\ halts \mathsf{Apply}(\ulcorner p \urcorner, code \ulcorner p \urcorner) & \Downarrow \mathsf{False}() & \Rightarrow \\ halts \ulcorner p \urcorner & \Downarrow \mathsf{False}() & \end{array}
```

Thus halts' solves the previous variant of the halting problem, and we have found a contradiction.

Summary

- ► Concrete and abstract syntax.
- Operational semantics.
- Several variants of the halting problem.
- ▶ Representing inductively defined sets.