Lecture
 Models of Computation (DIT310, TDA184)

Nils Anders Danielsson
2016-11-14

Today

χ, a small functional language:

- Concrete and abstract syntax.
- Operational semantics.
- Several variants of the halting problem.
- Representing inductively defined sets.

Concrete

syntax

Concrete syntax

$$
e::=x
$$

$$
\left(e_{1} e_{2}\right)
$$

$$
\lambda x . e
$$

$$
\mathrm{c}\left(e_{1}, \ldots, e_{n}\right)
$$

$$
\text { case } e \text { of }\left\{c_{1}\left(x_{1}, \ldots, x_{n}\right) \rightarrow e_{1} ; \ldots\right\}
$$

$$
\operatorname{rec} x=e
$$

Variables (x) and constructors (c) are assumed to come from two disjoint, countably infinite sets.

Sometimes extra parentheses are used, and sometimes parentheses are omitted around applications: $e_{1} e_{2} e_{3}$ means $\left(\left(e_{1} e_{2}\right) e_{3}\right)$.

Examples

χ	Haskell
$\lambda x \cdot e$	\x $->\mathrm{e}$
True ()	True
$\operatorname{Succ}(n)$	Succ n
$\operatorname{Cons}(x, x s)$	$\mathrm{x}: \mathrm{xs}$
$\operatorname{rec} x=e$	let $\mathrm{x}=\mathrm{e}$ in x

Note: Haskell is typed and non-strict, χ is untyped and strict.

Another example

χ :
case e of $\{\operatorname{Zero}() \rightarrow x ; \operatorname{Succ}(n) \rightarrow y\}$

Haskell:
case e of

$$
\begin{array}{lll}
\text { Zero } & -> & x \\
\text { Succ n } & \text { y }
\end{array}
$$

And two more

rec $a d d=\lambda m . \lambda n$. case n of
$\{$ Zero() $\rightarrow m$
; $\operatorname{Succ}(n) \rightarrow \operatorname{Succ}($ add $m n)$ \}
λm. rec $a d d=\lambda n$. case n of
$\{$ Zero() $\rightarrow m$
; Succ $(n) \rightarrow \operatorname{Succ}($ add $n)$
\}

What is the value of the following expression?

```
\((\operatorname{rec} f o o=\lambda m . \lambda n\). case \(n\) of \(\{\)
    Zero() \(\rightarrow m\);
    \(\operatorname{Succ}(n) \rightarrow\) case \(m\) of \(\{\)
        Zero() \(\rightarrow\) Zero();
        \(\operatorname{Succ}(m) \rightarrow\) foo \(m n\}\})\)
Succ(Succ(Zero())) Succ(Zero())
```

- Zero()
- Succ(Succ(Zero()))
- Succ(Zero())
- Succ(Succ(Succ(Zero())))

$$
\begin{gathered}
\text { Abstract } \\
\text { syntax }
\end{gathered}
$$

Abstract syntax

$$
\begin{gathered}
\frac{x \in \operatorname{Var}}{\operatorname{var} x \in \operatorname{Exp}} \quad \frac{e_{1} \in \operatorname{Exp} e_{2} \in \operatorname{Exp}}{\text { apply } e_{1} e_{2} \in \operatorname{Exp}} \\
\frac{x \in \operatorname{Var} \quad e \in \operatorname{Exp}}{\text { lambda } x e \in \operatorname{Exp}} \quad \frac{x \in \operatorname{Var} \quad e \in \operatorname{Exp}}{\operatorname{rec} x e \in \operatorname{Exp}}
\end{gathered}
$$

Var: Assumed to be countably infinite.

Abstract syntax

$$
\begin{gathered}
\frac{c \in \text { Const } \quad e s \in \text { List Exp }}{\text { const } c \text { es } \in \text { Exp }} \\
\frac{e \in \operatorname{Exp} \quad b s \in \text { List Br }}{\text { case } e \text { bs } \in \operatorname{Exp}} \\
\frac{c \in \text { Const } \quad x s \in \text { List Var } \quad e \in \operatorname{Exp}}{\text { branch } c x s e \in B r}
\end{gathered}
$$

Const: Assumed to be countably infinite.
semantics

Operational semantics

- The binary relation \Downarrow relates closed expressions.
- An expression is closed if it has no free variables.
- $e \Downarrow v$: e terminates with the value v.

Quiz

Which of the following expressions are closed?

- y
- $\lambda x . \lambda y \cdot x$
- case x of $\{\operatorname{Cons}(x, x s) \rightarrow x\}$
- case $\operatorname{Succ}(\operatorname{Zero}())$ of $\{\operatorname{Succ}(x) \rightarrow x\}$
- $\operatorname{rec} f=\lambda x . f$

Operational semantics $(1 / 3)$

lambda $x e \Downarrow$ lambda $x e$

$$
\begin{gathered}
\frac{e_{1} \Downarrow \text { lambda } x e \quad e_{2} \Downarrow v_{2} \quad e\left[x \leftarrow v_{2}\right] \Downarrow v}{\text { apply } e_{1} e_{2} \Downarrow v} \\
\frac{e[x \leftarrow \operatorname{rec} x e] \Downarrow v}{\operatorname{rec} x e \Downarrow v}
\end{gathered}
$$

Substitution

- $e\left[x \leftarrow e^{\prime}\right]$: Substitute e^{\prime} for every free occurrence of x in e.
- To keep things simple: e^{\prime} must be closed.
- If e^{\prime} is not closed, then this definition is prone to variable capture.

Substitution

$\operatorname{var} x\left[x \leftarrow e^{\prime}\right]=e^{\prime}$
$\operatorname{var} y\left[x \leftarrow e^{\prime}\right]=\operatorname{var} y \quad$ if $x \neq y$
apply $e_{1} e_{2}\left[x \leftarrow e^{\prime}\right]=$ $\operatorname{apply}\left(e_{1}\left[x \leftarrow e^{\prime}\right]\right)\left(e_{2}\left[x \leftarrow e^{\prime}\right]\right)$
lambda x e $\left[x \leftarrow e^{\prime}\right]=$ lambda $x e$
lambda $y e\left[x \leftarrow e^{\prime}\right]=$
lambda $y\left(e\left[x \leftarrow e^{\prime}\right]\right) \quad$ if $x \neq y$
And so on...

Quiz

What is the result of
$($ rec $y=$ case x of $\{\mathrm{c}() \rightarrow x ; \mathrm{d}(x) \rightarrow x\})[x \leftarrow \lambda z . z] ?$

- rec $y=$ case x of $\{\mathrm{c}() \rightarrow x ; \mathrm{d}(x) \rightarrow x\}$
- rec $y=$ case x of $\{\mathrm{c}() \rightarrow x ; \mathrm{d}(x) \rightarrow \lambda z . z\}$
- rec $y=$ case $\lambda z . z$ of $\{\mathrm{c}() \rightarrow \lambda z . z ; \mathrm{d}(x) \rightarrow x\}$
$-\operatorname{rec} y=$ case $\lambda z . z$ of $\{\mathrm{c}() \rightarrow \lambda z . z ; \mathrm{d}(\lambda z . z) \rightarrow x\}$
- rec $y=$ case $\lambda z . z$ of $\{\mathrm{c}() \rightarrow \lambda z . z ; \mathrm{d}(x) \rightarrow \lambda z . z\}$

Operational semantics $(2 / 3)$

$\frac{e s \Downarrow^{\star} v s}{\text { const } c \text { es } \Downarrow \text { const } c v s}$
cons e es \Downarrow^{\star} cons $v v s$

An example

	nil \Downarrow^{\star} nil	nil \Downarrow^{\star} nil
$\begin{gathered} \overline{\text { lambda } x(\operatorname{var} x) \Downarrow} \\ \text { lambda } x(\operatorname{var} x) \end{gathered}$	const c nil \Downarrow const c nil	$\operatorname{var} x[x \leftarrow$ const c nil $] \Downarrow$ const c nil

apply $($ lambda $x(\operatorname{var} x))($ const c nil $) \Downarrow$ const c nil

Operational semantics $(3 / 3)$

$e \Downarrow$ const c vs Lookup c bs xs e^{\prime} $e^{\prime}[x s \leftarrow v s] \mapsto e^{\prime \prime} \quad e^{\prime \prime} \Downarrow v$
case $e b s \Downarrow v$

Operational semantics $(3 / 3)$

$$
\begin{aligned}
& e \Downarrow \text { const } c \text { vs Lookup c bs xs } e^{\prime} \\
& e^{\prime}[x s \leftarrow v s] \mapsto e^{\prime \prime} \quad e^{\prime \prime} \Downarrow v \\
& \text { case } e b s \Downarrow v
\end{aligned}
$$

The first matching branch, if any:
$\overline{\text { Lookup } c(\text { cons (branch } c x s e) b s) x s e}$
$c \neq c^{\prime} \quad$ Lookup c bs xs e
Lookup c (cons (branch $c^{\prime} x s^{\prime} e^{\prime}$) bs) xs e

Operational semantics $(3 / 3)$

$$
\frac{\begin{array}{c}
e \Downarrow \text { const } c \text { vs } \quad \text { Lookup c bs xs } e^{\prime} \\
e^{\prime}[x s \leftarrow v s] \mapsto e^{\prime \prime} \quad e^{\prime \prime} \Downarrow v
\end{array}}{\text { case } e b s \Downarrow v}
$$

$e[x s \leftarrow v s] \mapsto e^{\prime}$ holds iff

- there is some n such that
$x s=$ cons $x_{1}\left(\ldots\left(\right.\right.$ cons x_{n} nil $\left.)\right)$ and $v s=$ cons $v_{1}\left(\ldots\left(\right.\right.$ cons v_{n} nil $\left.)\right)$, and

$$
e^{\prime}=\left(\left(e\left[x_{n} \leftarrow v_{n}\right]\right) \ldots\right)\left[x_{1} \leftarrow v_{1}\right]
$$

Operational semantics $(3 / 3)$

$e \Downarrow$ const c vs Lookup c bs xs e^{\prime}
$e^{\prime}[x s \leftarrow v s] \mapsto e^{\prime \prime} \quad e^{\prime \prime} \Downarrow v$
case $e b s \Downarrow v$

$$
\overline{e[\text { nil } \leftarrow \mathrm{nil}] \mapsto e}
$$

$$
e[x s \leftarrow v s] \mapsto e^{\prime}
$$

$\overline{e[\text { cons } x x s \leftarrow \text { cons } v v s] \mapsto e^{\prime}[x \leftarrow v]}$

Quiz

Which of the following sets are inhabited?

- case $c()$ of $\{c() \rightarrow d() ; c() \rightarrow c()\} \Downarrow c()$
- case $c()$ of $\{c() \rightarrow d() ; c() \rightarrow c()\} \Downarrow d()$
- case c() of $\{\mathrm{c}(x) \rightarrow \mathrm{d}() ; \mathrm{c}() \rightarrow \mathrm{d}()\} \Downarrow \mathrm{d}()$
- case Succ(False()) of

$$
\{\text { Zero }() \rightarrow \operatorname{True}() ; \operatorname{Succ}(n) \rightarrow n\} \Downarrow \text { False }()
$$

- case Succ(False()) of $\{$ Zero() \rightarrow True ($)$; Succ ()\rightarrow False($)\}$ \Downarrow False()

Some

properties

Deterministic

The semantics is deterministic:
$e \Downarrow v_{1}$ and $e \Downarrow v_{2}$ imply $v_{1}=v_{2}$.

Values

- An expression e is called a value if $e \Downarrow e$.
- Values can be characterised inductively:
$\overline{\text { Value (lambda } x e)} \quad \frac{\text { Values es }}{\text { Value }(\text { const } c \text { es) }}$
$\overline{\text { Values nil }} \quad \frac{\text { Value } e \quad \text { Values es }}{\text { Value }(\text { cons } e \text { es })}$
- Value e holds iff $e \Downarrow e$.
- If $e \Downarrow v$, then Value v.

There is a non-terminating expression

- The following program does not terminate: rec $x(\operatorname{var} x)$.
- Recall the rule for rec: $\frac{e[x \leftarrow \operatorname{rec} x e] \Downarrow v}{\operatorname{rec} x e \Downarrow v}$.
- Note that
$\operatorname{var} x[x \leftarrow \operatorname{rec} x(\operatorname{var} x)]=\operatorname{rec} x(\operatorname{var} x)$.
- Idea:

$$
\begin{array}{ll}
\operatorname{rec} x(\operatorname{var} x) & \rightarrow \\
\operatorname{var} x[x \leftarrow \operatorname{rec} x(\operatorname{var} x)] & = \\
\operatorname{rec} x(\operatorname{var} x) & \rightarrow
\end{array}
$$

There is a non-terminating expression

- If the program did terminate, then there would be a finite derivation of the following form:
$\frac{\vdots}{\frac{\operatorname{rec} x(\operatorname{var} x) \Downarrow v}{\operatorname{rec} x(\operatorname{var} x) \Downarrow v}} \frac{\operatorname{rec} x(\operatorname{var} x) \Downarrow v}{}$
- Exercise: Prove more formally that this is impossible, using induction on the structure of the semantics.

The halting problem

The extensional halting problem

There is no closed expression halts such that, for every closed expression p,

- halts $(\lambda x . p) \Downarrow \operatorname{True}()$, if p terminates, and
- halts $(\lambda x . p) \Downarrow$ False(), otherwise.

The extensional halting problem

- Assume that halts can be defined.
- Define terminv $\in \operatorname{Exp} \rightarrow \operatorname{Exp}$:

$$
\begin{aligned}
& \text { terminv } p=\text { case halts }(\lambda x . p) \text { of } \\
& \\
& \{\operatorname{True}() \rightarrow \operatorname{rec} x=x \\
& ; \operatorname{False}() \rightarrow \operatorname{Zero}() \\
&
\end{aligned}
$$

- For any closed expression p : terminv p terminates iff p does not terminate.

The extensional halting problem

- Now consider the closed expression strange defined by rec $p=$ terminv p.
- We get a contradiction:

$$
\begin{array}{lrl}
(\exists v \cdot \text { strange } & \Downarrow v) & \Leftrightarrow \\
(\exists v \cdot \text { rec } p=\text { terminv } p & \Downarrow v) & \Leftrightarrow \\
(\exists v \cdot \text { terminv } p[p \leftarrow \text { strange }] \Downarrow v) & \Leftrightarrow \\
(\exists v \cdot \text { terminv strange } & \Downarrow v) & \Leftrightarrow \\
\neg(\exists v \cdot \text { strange } & \Downarrow v) &
\end{array}
$$

The extensional halting problem

- Note that we apply halts to a program, not to the source code of a program.
- How can source code be represented?

Representing
 inductively
 defined sets

Natural numbers

One method:

- Notation: $\left.{ }^{\ulcorner } n\right\urcorner \in \operatorname{Exp}$ represents $n \in \mathbb{N}$.
- Representation:

$$
\begin{aligned}
& \ulcorner\text { zero }\urcorner=\operatorname{Zero}() \\
& \left\ulcorner\operatorname{suc} n^{\urcorner}=\operatorname{Succ}\left(\left\ulcorner n^{\urcorner}\right)\right.\right.
\end{aligned}
$$

Natural numbers

One method:

- Notation: $\ulcorner n\urcorner \in \operatorname{Exp}$ represents $n \in \mathbb{N}$.
- Representation:

$$
\begin{aligned}
& \ulcorner\text { zero }\urcorner=\operatorname{Zero}() \\
& \left\ulcorner\operatorname{suc} n^{\urcorner}=\operatorname{Succ}\left(\left\ulcorner n^{\urcorner}\right)\right.\right.
\end{aligned}
$$

- Note that the concrete syntax should be interpreted as abstract syntax:

$$
\begin{aligned}
& \ulcorner\text { zero }\urcorner=\text { const } \underline{\text { Zero }} \text { nil } \\
& \ulcorner\text { suc } n\urcorner=\text { const } \underline{\text { Succ }}(\text { cons }\ulcorner n\urcorner \text { nil })
\end{aligned}
$$

(For some distinct $\underline{\text { Zero }}, \underline{\text { Succ }} \in$ Const.)

Lists

If elements in A can be represented, then elements in List A can also be represented:

$$
\begin{aligned}
\left\ulcorner\operatorname{nil}^{\urcorner}\right. & =\operatorname{Nil}() \\
\ulcorner\operatorname{cons} x x s\urcorner & =\operatorname{Cons}(\ulcorner x\urcorner,\ulcorner x s\urcorner)
\end{aligned}
$$

Many inductively defined sets can be represented using constructor trees in analogous ways.

Variables, constants

- Var: Countably infinite.
- Thus each variable $x \in \operatorname{Var}$ can be assigned a unique natural number $n \in \mathbb{N}$.
- Define $\ulcorner x\urcorner=\ulcorner n\urcorner$.
- Similarly for constants.

Source code

$$
\begin{aligned}
& \ulcorner\operatorname{var} x\urcorner \quad=\operatorname{Var}(\ulcorner x\urcorner) \\
& \begin{aligned}
\left\ulcorner\text { apply } e_{1} e_{2}{ }^{\urcorner}\right. & =\operatorname{Apply}\left(\left\ulcorner e_{1}\right\urcorner,\left\ulcorner e_{2}{ }^{\urcorner}\right)\right. \\
\ulcorner\text {lambda } x e\urcorner & =\operatorname{Lambda}\left(\ulcorner x\urcorner,\left\ulcorner e{ }^{\urcorner}\right)\right.
\end{aligned} \\
& \left\ulcorner\text {rec } x e^{\urcorner} \quad=\operatorname{Rec}(\ulcorner x\urcorner,\ulcorner e\urcorner)\right. \\
& \text { const } c \text { es }\urcorner=\operatorname{Const}(\ulcorner c\urcorner,\ulcorner e s\urcorner) \\
& \ulcorner\text { case } e b s\urcorner=\operatorname{Case}(\ulcorner e\urcorner,\ulcorner b s\urcorner) \\
& \ulcorner\text { branch } c \text { xs } e\urcorner=\operatorname{Branch}(\ulcorner c\urcorner,\ulcorner x s\urcorner,\ulcorner e\urcorner)
\end{aligned}
$$

Example

- Concrete syntax: $\lambda x . \operatorname{Succ}(x)$.
- Abstract syntax:
lambda $\underline{x}($ const $\underline{S u c c}(\operatorname{cons}(\operatorname{var} \underline{x})$ nil) $)$
(for some $\underline{x} \in \operatorname{Var}$ and $\underline{\text { Succ }} \in$ Const).
- Representation (concrete syntax):

Lambda ($\ulcorner\underline{x}\urcorner$,
Const $\left.\left({ }^{\ulcorner } \underline{\text { Succ }}{ }^{\urcorner}, \operatorname{Cons}\left(\operatorname{Var}\left({ }^{(} \underline{x}{ }^{\urcorner}\right), \operatorname{Nil}()\right)\right)\right)$

- If \underline{x} and $\underline{S u c c}$ both correspond to zero:

Lambda(Zero(),
Const(Zero(),
Cons $(\operatorname{Var}(\operatorname{Zero}()), \operatorname{Nil}())))$

Example

Representation (abstract syntax):

```
const Lambda (
    cons (const Z Zero nil) (
    cons (const Const (
    cons (const Z्\mathrm{ Zero nil) (}
    cons (const Cons (
        cons (const \underline{Var}}(\mathrm{ cons (const Zero nil) nil)) (
        cons (const Nil nil)
        nil)))
    nil)))
nil))
```


Quiz

How is rec $x=x$ represented?
Assume that x corresponds to 1 .

- $\operatorname{Rec}(\mathrm{X}(), \mathrm{X}())$
- $\operatorname{Rec}(X(), \operatorname{Var}(X()))$
- Equals($\operatorname{Rec}(\mathrm{X}()), \mathrm{X}())$
- Rec(Succ(Zero()), Succ(Zero()))
- $\operatorname{Rec}(\operatorname{Succ}(Z e r o()), \operatorname{Var}(\operatorname{Succ}(\operatorname{Zero}())))$
- Equals(Rec(Succ(Zero())), Succ(Zero()))

The halting
 problem, take two

The intensional halting problem (with self-application)

There is no closed expression halts such that, for every closed expression p,

- halts $\ulcorner p\urcorner \Downarrow \operatorname{True}()$, if $p\ulcorner p\urcorner$ terminates, and
- halts $\ulcorner p\urcorner \Downarrow$ False(), otherwise.

With self-application

- Assume that halts can be defined.
- Define the closed expression terminv:

$$
\begin{aligned}
\text { terminv }=\lambda & \lambda . \text { case halts } p \text { of } \\
& \{\text { True }() \rightarrow \operatorname{rec} x=x \\
& ; \text { False }() \rightarrow \operatorname{Zero}() \\
& \}
\end{aligned}
$$

- For any closed expression p : terminv $\ulcorner p\urcorner$ terminates iff $p\ulcorner p\urcorner$ does not terminate.
- Thus terminv ${ }^{\ulcorner }$terminv ${ }^{\urcorner}$terminates iff terminv ${ }^{\ulcorner }$terminv \urcornerdoes not terminate.

The intensional halting problem

There is no closed expression halts such that, for every closed expression p,

- halts $\ulcorner p\urcorner \Downarrow \operatorname{True}()$, if p terminates, and
- halts $\left\ulcorner p^{\urcorner} \Downarrow\right.$ False(), otherwise.

The intensional halting problem

- Assume that halts can be defined.
- If we can use halts to solve the previous variant of the halting problem, then we have found a contradiction.

The intensional halting problem

- Exercise:

Define a closed expression code satisfying:

- For any closed expression p,

$$
\text { code }\ulcorner p\urcorner \Downarrow\ulcorner\ulcorner p\urcorner\urcorner .
$$

- Define the closed expression halts' by λp. halts Apply (p, code p).

The intensional halting problem

For any closed expression p :

$$
\begin{array}{lll}
p\ulcorner p\urcorner \text { terminates } & & \Rightarrow \\
\text { halts }\ulcorner p\ulcorner p\urcorner\urcorner & \Downarrow \operatorname{True}() & \Rightarrow \\
\text { halts Apply }(\ulcorner p\urcorner,\ulcorner\ulcorner p\urcorner\urcorner) & \Downarrow \operatorname{True}() & \Rightarrow \\
\text { halts Apply }(\ulcorner p\urcorner, \text { code }\ulcorner p\urcorner) \Downarrow \text { True() } & \Rightarrow \\
\text { halts }\ulcorner\ulcorner p\urcorner & \Downarrow \text { True }() &
\end{array}
$$

The intensional halting problem

For any closed expression p :

$$
\begin{array}{lll}
p\ulcorner p\urcorner \text { does not terminate } & & \Rightarrow \\
\text { halts }\ulcorner p\ulcorner p\urcorner\urcorner & \Downarrow \text { False }() & \Rightarrow \\
\text { halts Apply }(\ulcorner p\urcorner,\ulcorner\ulcorner p\urcorner\urcorner) & \Downarrow \text { False() } & \Rightarrow \\
\text { halts Apply }(\ulcorner p\urcorner, \text { code }\ulcorner p\urcorner) \Downarrow \text { False () } & \Rightarrow \\
\text { halts }{ }^{\prime}\ulcorner p\urcorner & \Downarrow \text { False() } &
\end{array}
$$

Thus halts' solves the previous variant of the halting problem, and we have found a contradiction.

Summary

- Concrete and abstract syntax.
- Operational semantics.
- Several variants of the halting problem.
- Representing inductively defined sets.

