Lecture Models of Computation (DIT310, TDA184)

Nils Anders Danielsson

2016-11-07

Today

- ▶ Inductive definitions:
 - ▶ Functions defined by primitive recursion.
 - Proofs by structural induction.
- ▶ Two models of computation:
 - ▶ PRF.
 - ▶ The recursive functions.

Natural numbers

The natural numbers

The set of natural numbers, \mathbb{N} , is defined inductively in the following way:

- ightharpoonup zero $\in \mathbb{N}$.
- ▶ If $n \in \mathbb{N}$, then suc $n \in \mathbb{N}$.

The natural numbers

We can construct natural numbers by using these rules a finite number of times. Examples:

- ightharpoonup 0 = zero.
- ▶ 1 = suc zero.
- ightharpoonup 2 = suc (suc zero).

The value zero and the function suc are called *constructors*.

The natural numbers

An alternative way to present the rules:

$$\frac{n \in \mathbb{N}}{\operatorname{zero} \in \mathbb{N}} \qquad \frac{n \in \mathbb{N}}{\operatorname{suc} \ n \in \mathbb{N}}$$

Propositions, predicates and relations

- ▶ A *proposition* is something that can (perhaps) be proved or disproved.
- ▶ A predicate on a set A is a function from A to propositions.
- ▶ A binary relation on two sets A and B is a function from A and B to propositions.
- ▶ Relations can also have more arguments.

Equality

Two natural numbers are equal if they are built up by the same constructors.

We can see this as an inductively defined relation:

(The names of the constructors have been omitted.)

We can define a function from $\mathbb N$ to a set A in the following way:

- ▶ A value $z \in A$, the function's value for zero.
- ▶ A function $s \in \mathbb{N} \to A \to A$, that given $n \in \mathbb{N}$ and the function's value for n gives the function's value for suc n.

A definition by primitive recursion can be given the following schematic form:

```
\begin{array}{l} f \in \mathbb{N} \rightarrow A \\ f \ \mathsf{zero} &= z \\ f \ (\mathsf{suc} \ n) = s \ n \ (f \ n) \end{array}
```

We can capture this scheme in a higher-order function:

$$\begin{split} \operatorname{rec} &\in A \to (\mathbb{N} \to A \to A) \to \mathbb{N} \to A \\ \operatorname{rec} &z \ s \ \operatorname{zero} &= z \\ \operatorname{rec} &z \ s \ (\operatorname{suc} \ n) = s \ n \ (\operatorname{rec} \ z \ s \ n) \end{split}$$

- ▶ Can we define $add \in \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ using primitive recursion?
- ▶ Let "A" be $\mathbb{N} \to \mathbb{N}$.
- ► Scheme:

$$\begin{array}{ll} add \in \mathbb{N} \to (\mathbb{N} \to \mathbb{N}) \\ add \ \mathsf{zero} &= ? \\ add \ (\mathsf{suc} \ m) = ? \end{array}$$

- ▶ Can we define $add \in \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ using primitive recursion?
- ▶ Let "A" be $\mathbb{N} \to \mathbb{N}$.
- ► Scheme:

$$\begin{array}{ll} add \in \mathbb{N} \to (\mathbb{N} \to \mathbb{N}) \\ add \ \mathsf{zero} &= \lambda \ n. \ n \\ add \ (\mathsf{suc} \ m) = ? \end{array}$$

- ▶ Can we define $add \in \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ using primitive recursion?
- ▶ Let "A" be $\mathbb{N} \to \mathbb{N}$.
- ► Scheme:

$$add \in \mathbb{N} \to (\mathbb{N} \to \mathbb{N})$$

$$add \text{ zero } = \lambda \ n. \ n$$

$$add \text{ (suc } m) = \lambda \ n. \ ?$$

- ▶ Can we define $add \in \mathbb{N} \to \mathbb{N} \to \mathbb{N}$ using primitive recursion?
- ▶ Let "A" be $\mathbb{N} \to \mathbb{N}$.
- ► Scheme:

$$\begin{array}{ll} add \in \mathbb{N} \rightarrow (\mathbb{N} \rightarrow \mathbb{N}) \\ add \ \mathsf{zero} &= \lambda \ n. \ n \\ add \ (\mathsf{suc} \ m) = \lambda \ n. \ \mathsf{suc} \ (add \ m \ n) \end{array}$$

Quiz

Which of the following terms define addition?

- ▶ $rec (\lambda n. n) (\lambda m r. \lambda n. suc (r m n))$
- ▶ $rec (\lambda n. n) (\lambda m r. \lambda n. suc (r n))$
- ▶ $rec (\lambda n. n) (\lambda m r. \lambda n. suc (r m))$

Structural induction

Let us assume that we have a predicate P on \mathbb{N} . If we can prove the following two statements, then we have proved $\forall n.\ P\ n$:

- ▶ *P* zero.
 - $ightharpoonup \forall n. \ P \ n \ \text{implies} \ P \ (\text{suc } n).$

Theorem: $\forall m \in \mathbb{N}$. $add \ m \ \mathsf{zero} = m$.

Proof:

- ▶ Let us use structural induction, with the predicate $P = \lambda \ m. \ add \ m \ {\sf zero} = m.$
- ▶ There are two cases:

```
P zero \Leftarrow { By definition. } add zero zero = zero \Leftarrow { By definition. } zero = zero
```

Theorem: $\forall m \in \mathbb{N}$. $add \ m \ \mathsf{zero} = m$.

Proof:

- ▶ Let us use structural induction, with the predicate $P = \lambda m$. add m zero = m.
- ▶ There are two cases:

$$\begin{array}{ll} P \; (\mathsf{suc} \; m) & \Leftarrow \\ add \; (\mathsf{suc} \; m) \; \mathsf{zero} = \mathsf{suc} \; m & \Leftarrow \\ \mathsf{suc} \; (add \; m \; \mathsf{zero}) = \mathsf{suc} \; m & \Leftarrow \\ add \; m \; \mathsf{zero} = m & \Leftarrow \\ P \; m & \end{array}$$

More inductively defined sets

Cartesian products

The cartesian product of two sets A and B is defined inductively in the following way:

$$\frac{x \in A \qquad y \in B}{\mathsf{pair}\; x\; y \in A \times B}$$

Notice that this definition is "non-recursive".

Scheme for primitive recursion for pairs:

$$f \in A \times B \to C$$

 $f \text{ (pair } x \text{ } y) = p \text{ } x \text{ } y$

The corresponding higher-order function:

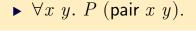
$$uncurry \in (A \to B \to C) \to A \times B \to C$$

 $uncurry \ p \ (pair \ x \ y) = p \ x \ y$

Structural induction

Let us assume that we have a predicate P on $A \times B$. If we can prove the following statement,

then we have proved $\forall p. \ P \ p$:



Lists

The set of finite lists containing elements from the set A is defined inductively in the following way:

$$\frac{x \in A \quad xs \in List \ A}{\operatorname{cons} \ x \ xs \in List \ A}$$

Scheme for primitive recursion for lists:

$$f \in List \ A \to B$$

 $f \text{ nil} = n$
 $f (cons \ x \ xs) = c \ x \ xs \ (f \ xs)$

The corresponding higher-order function:

$$\begin{array}{ccc} \textit{listrec} \in B \rightarrow (A \rightarrow \textit{List} \ A \rightarrow B \rightarrow B) \rightarrow \\ & \textit{List} \ A \rightarrow B \\ \\ \textit{listrec} \ n \ c \ \text{nil} & = n \\ \\ \textit{listrec} \ n \ c \ (\text{cons} \ x \ xs) = c \ x \ xs \ (\textit{listrec} \ n \ c \ xs) \end{array}$$

Structural induction

Let us assume that we have a predicate P on $List\ A$. If we can prove the following statements, then we have proved $\forall xs.\ P\ xs$:

- ▶ P nil.
 - $ightharpoonup \forall x \ xs. \ P \ xs \ \text{implies} \ P \ (\text{cons} \ x \ xs).$

Pattern

- ▶ Do you see the pattern?
- ► Given an inductive definition of the kind presented here, we can derive:
 - ▶ The structural induction principle.
 - ▶ The primitive recursion scheme.

Quiz

Define the booleans inductively. How many cases does the structural induction principle have?

- **▶** 1
- **▶** 2
- **▶** 3
- **•** 4

Bonus question: Can you think of an inductive definition for which the answer would be 0?

PRF

The primitive recursive functions

- ▶ A model of computation.
- ▶ Programs taking tuples of natural numbers to natural numbers.
- ▶ Every program is terminating.

Sketch

The primitive recursive functions can be constructed in the following ways:

```
\begin{split} f\;() &= 0 \\ f\;(x) &= \mathsf{suc}\; x \\ f\;(x_1, ..., x_k, ..., x_n) &= x_k \\ f\;(x_1, ..., x_n) &= g\;(h_1\;(x_1, ..., x_n), ..., h_k\;(x_1, ..., x_n)) \\ f\;(x_1, ..., x_n, 0) &= g\;(x_1, ..., x_n) \\ f\;(x_1, ..., x_n, 1 + x) &= h\;(x_1, ..., x_n, f\;(x_1, ..., x_n, x), x) \end{split}
```

Vectors

Vectors, lists of a fixed length:

$$\frac{xs \in A^n \qquad x \in A}{xs, x \in A^{1+n}}$$

Read nil, x, y, z as ((nil, x), y), z.

Indexing

An indexing operation can be defined by (a slight variant of) primitive recursion:

$$\begin{array}{l} index \in A^n \rightarrow \{\, i \in \mathbb{N} \mid 0 \leq i < n \,\} \rightarrow A \\ index \, (xs,x) \, \operatorname{zero} \quad = x \\ index \, (xs,x) \, (\operatorname{suc} \, n) = index \, xs \, n \end{array}$$

Abstract syntax

 PRF_n : Functions that take n arguments.

$$\frac{0 \leq i < n}{ \operatorname{suc} \in PRF_0} \quad \frac{0 \leq i < n}{ \operatorname{proj} \ i \in PRF_n}$$

$$\frac{f \in PRF_m \quad gs \in (PRF_n)^m}{ \operatorname{comp} f \ gs \in PRF_n}$$

$$\frac{f \in PRF_n \quad g \in PRF_{2+n}}{ \operatorname{rec} f \ g \in PRF_{1+n}}$$

Denotational semantics

```
\llbracket \_ \rrbracket \in PRF_n \to (\mathbb{N}^n \to \mathbb{N})
\llbracket \operatorname{zero} \quad \rrbracket \operatorname{nil} \quad = 0
\llbracket \operatorname{suc} \quad \rrbracket (\operatorname{nil}, n) = 1 + n
\llbracket \operatorname{proj} i \quad \rrbracket \rho \quad = index \rho i
 \llbracket \operatorname{comp} f \ gs \, \rrbracket \, \rho \qquad \qquad = \llbracket f \, \rrbracket \, (\llbracket \ gs \, \rrbracket^\star \, \rho) 
\llbracket \operatorname{rec} f \ q \ \rrbracket (\rho, \operatorname{zero}) = \llbracket f \rrbracket \rho
\llbracket \operatorname{rec} f \ g \ \rrbracket (\rho, \operatorname{suc} n) = \llbracket g \rrbracket (\rho, \llbracket \operatorname{rec} f \ g \rrbracket (\rho, n), n)
\llbracket \_ \rrbracket^* \in (PRF_m)^n \to (\mathbb{N}^m \to \mathbb{N}^n)
\llbracket \operatorname{\mathsf{nil}} \quad \rrbracket^\star \rho = \operatorname{\mathsf{nil}}
\llbracket fs, f \rrbracket^* \rho = \llbracket fs \rrbracket^* \rho, \llbracket f \rrbracket \rho
```

Quiz

Which of the following terms, all in PRF_2 , define addition?

- ▶ rec (proj 0) (proj 0)
- ▶ rec (proj 0) (proj 1)
- ▶ rec (proj 0) (comp suc (nil, proj 0))
- ▶ rec (proj 0) (comp suc (nil, proj 1))

Hint: Examine $\llbracket p \rrbracket (\mathsf{nil}, m, n)$ for each program p.

Goal: Define add satisfying the following equations:

```
\forall m. \quad \llbracket add \rrbracket \text{ (nil, } m, \mathsf{zero)} = m
\forall m n. \quad \llbracket add \rrbracket \text{ (nil, } m, \mathsf{suc } n) = \sup \left( \llbracket add \rrbracket \text{ (nil, } m, n) \right)
```

If we can find a definition of add satisfying these equations, then we can prove using structural induction that add is an implementation of addition.

Perhaps we can use rec:

```
\forall m. \quad \llbracket \operatorname{rec} f \ g \ \rrbracket (\operatorname{nil}, m, \operatorname{zero}) = m \forall m \ n. \ \llbracket \operatorname{rec} f \ g \ \rrbracket (\operatorname{nil}, m, \operatorname{suc} n) =  \operatorname{suc} (\llbracket \operatorname{rec} f \ g \ \rrbracket (\operatorname{nil}, m, n))
```

Perhaps we can use rec:

```
\forall m. \quad \llbracket f \rrbracket (\mathsf{nil}, m) = m \forall m \ n. \ \llbracket \mathsf{rec} \ f \ g \rrbracket (\mathsf{nil}, m, \mathsf{suc} \ n) = \mathsf{suc} \ (\llbracket \mathsf{rec} \ f \ g \rrbracket (\mathsf{nil}, m, n))
```

Perhaps we can use rec:

```
 \forall \ m. \quad \llbracket f \rrbracket (\mathsf{nil}, m) = m \\ \forall \ m \ n. \quad \llbracket g \rrbracket (\mathsf{nil}, m, \llbracket \operatorname{rec} f \ g \rrbracket (\mathsf{nil}, m, n), n) = \\ \operatorname{suc} \left( \llbracket \operatorname{rec} f \ g \rrbracket (\mathsf{nil}, m, n) \right)
```

The zero case:

 $\forall \ m. \ \llbracket f \, \rrbracket \, (\mathsf{nil}, m) = m$

The zero case:

 $\forall m. \ \llbracket \operatorname{proj} 0 \ \rrbracket (\operatorname{nil}, m) = m$

The suc case:

```
\forall \ m \ n. \ \llbracket \ g \, \rrbracket \, (\mathsf{nil}, m, \llbracket \ \mathsf{rec} \ f \ g \, \rrbracket \, (\mathsf{nil}, m, n), n) = \\ \mathsf{suc} \, \left( \llbracket \ \mathsf{rec} \ f \ g \, \rrbracket \, (\mathsf{nil}, m, n) \right)
```

The suc case:

$$\forall m \ n \ r. \ \llbracket g \rrbracket (\mathsf{nil}, m, r, n) = \mathsf{suc} \ r$$

The suc case:

 $\forall m \ n \ r. \ \llbracket \mathsf{comp} \ h \ hs \ \rrbracket (\mathsf{nil}, m, r, n) = \mathsf{suc} \ r$

The suc case:

 $\forall m \ n \ r. \ \llbracket \ h \ \rrbracket (\llbracket \ hs \ \rrbracket^\star(\mathsf{nil}, m, r, n)) = \mathsf{suc} \ r$

The suc case:

 $\forall \ m \ n \ r. \ [\![\operatorname{suc}\,]\!] \ ([\![\operatorname{nil},k\,]\!]^{\star} (\operatorname{nil},m,r,n)) = \operatorname{suc} \ r$

The suc case:

 $\forall \ m \ n \ r. \ \llbracket \, \mathsf{suc} \, \rrbracket \, (\mathsf{nil}, \llbracket \, k \, \rrbracket \, (\mathsf{nil}, m, r, n)) = \mathsf{suc} \ r$

The suc case:

 $\forall m \ n \ r. \ \mathsf{suc} \ (\llbracket k \rrbracket (\mathsf{nil}, m, r, n)) = \mathsf{suc} \ r$

The suc case:

$$\forall \ m \ n \ r. \ \llbracket \ k \, \rrbracket \ (\mathsf{nil}, m, r, n) = r$$

The suc case:

 $\forall \ m \ n \ r. \ \llbracket \ \mathsf{proj} \ 1 \, \rrbracket \ (\mathsf{nil}, m, r, n) = r$

We end up with the following definition:

 $\mathsf{rec}\;(\mathsf{proj}\;0)\;(\mathsf{comp}\;\mathsf{suc}\;(\mathsf{nil},\mathsf{proj}\;1))$

Big-step operational semantics

Big-step operational semantics

$$\frac{gs\left[\rho\right]\ \psi^{\star}\ \rho' \qquad f\left[\rho'\right]\ \psi\ n}{\operatorname{comp}\ f\ gs\left[\rho\right]\ \psi\ n}$$

$$\frac{fs\left[\rho\right]\ \psi^{\star}\ ns \qquad f\left[\rho\right]\ \psi\ n}{\operatorname{nil}\left[\rho\right]\ \psi^{\star}\ \operatorname{nil}}$$

$$\frac{fs\left[\rho\right]\ \psi^{\star}\ ns \qquad f\left[\rho\right]\ \psi\ n}{fs,f\left[\rho\right]\ \psi^{\star}\ ns,n}$$

Equivalence

```
f [\rho] \Downarrow n \text{ iff } \llbracket f \rrbracket \rho = n,
fs [\rho] \Downarrow^{\star} \rho' \text{ iff } \llbracket fs \rrbracket^{\star} \rho = \rho'.
```

This can be proved by induction on the structure of the semantics in one direction, and f/fs in the other.

Equivalence

Thus the operational semantics is total and deterministic:

- $\blacktriangleright \ \forall f \ \rho. \ \exists \ n. \ f \ [\rho] \ \Downarrow \ n.$
- ▶ $\forall f \ \rho \ m \ n$. $f \ [\rho] \ \Downarrow \ m \ \text{and} \ f \ [\rho] \ \Downarrow \ n \ \text{implies} \ m = n$.

Quiz

Which of the following propositions are true?

- \blacktriangleright comp zero nil [nil, 5, 7] \Downarrow 0
- ▶ comp suc (nil, proj 0) [nil, 5, 7] \Downarrow 6
- rec zero (proj 1) [nil, 2] \Downarrow 0

Expressiveness

Not every (Turing-) computable function is primitive recursive.

Proof sketch:

- Assume that every computable function $f \in \mathbb{N} \to \mathbb{N}$ is represented by $\lceil f \rceil \in PRF_1$ satisfying $\forall n$. $\llbracket \lceil f \rceil \rrbracket (\mathsf{nil}, n) = f \ n$.
- ▶ Exercise: Define a function $code \in PRF_1 \rightarrow \mathbb{N}$ with a *computable* left inverse decode.

Expressiveness

- ▶ Define $g \in \mathbb{N} \to \mathbb{N}$ by $g \ n = \llbracket \ decode \ n \ \rrbracket \ (nil, n) + 1.$
- lacktriangle Note that g is computable.
- ▶ We get

```
\begin{array}{ll} g\;(code\;\lceil g \rceil) &= \\ \llbracket \; decode\;(code\;\lceil g \rceil) \, \rrbracket \; (\mathsf{nil}, code\;\lceil g \rceil) + 1 = \\ \llbracket \lceil g \rceil \, \rrbracket \; (\mathsf{nil}, code\;\lceil g \rceil) + 1 &= \\ g\;(code\;\lceil g \rceil) + 1, \end{array}
```

which is impossible.

The Ackermann function

- ▶ An explicit example of a computable function that is not primitive recursive.
- One variant:

```
\begin{array}{ll} ack \in \mathbb{N} \times \mathbb{N} \to \mathbb{N} \\ ack \; (\mathsf{zero}, \quad n) &= \mathsf{suc} \; n \\ ack \; (\mathsf{suc} \; m, \mathsf{zero}) &= ack \; (m, \mathsf{suc} \; \mathsf{zero}) \\ ack \; (\mathsf{suc} \; m, \mathsf{suc} \; n) &= ack \; (m, ack \; (\mathsf{suc} \; m, n)) \end{array}
```

► For more details, see Nordström, *The primitive recursive functions*.

recursive functions

The

The recursive functions

- A model of computation.
- ▶ Programs taking tuples of natural numbers to natural numbers.
- ▶ Not every program is terminating.

Abstract syntax

- ▶ Extends PRF with one additional constructor.
- $ightharpoonup RF_n$: Functions that take n arguments.
- ▶ Minimisation:

$$\frac{f \in RF_{1+n}}{\min f \in RF_n}$$

- ▶ Rough idea: min $f[\rho]$ is the smallest n for which $f[\rho, n]$ is 0.
- ▶ Note that there may not be such a number.

Big-step operational semantics

The operational semantics is extended:

$$\frac{f\left[\rho,n\right]\, \Downarrow\, 0 \qquad \, \forall \, m < n. \; \, \exists \, k. \, f\left[\rho,m\right] \, \Downarrow \, 1+k}{\min f\left[\rho\right] \, \Downarrow \, n}$$

Big-step operational semantics

The operational semantics is extended:

$$\frac{f\left[\rho,n\right] \, \Downarrow \, 0 \qquad \, \forall \, m < n. \; \, \exists \, k. \, f\left[\rho,m\right] \, \Downarrow \, 1 + k}{\min \, f\left[\rho\right] \, \Downarrow \, n}$$

The semantics is deterministic, but not total:

- ▶ $f[\rho] \Downarrow m$ and $f[\rho] \Downarrow n$ implies m = n.
- $\blacktriangleright \ \forall m. \ \exists f \in RF_m. \ \forall \rho. \not \exists n. f [\rho] \Downarrow n.$

Quiz

▶ Construct $f \in RF_0$ in such a way that $\nexists n. \ f \ [\mathrm{nil}] \ \Downarrow \ n.$

Denotational semantics?

We can try to extend the denotational semantics:

```
\llbracket \_ \rrbracket \in RF_n \to (\mathbb{N}^n \to \mathbb{N})
\llbracket \min f \rrbracket \rho = search f \rho 0
search \in RF_{1+n} \to \mathbb{N}^n \to \mathbb{N} \to \mathbb{N}
search f \rho n =
   if [\![ f \!]\!] (\rho, n) = 0
    then n
   else search f \rho (1+n)
```

Partial functions

- ► This "definition" does not give rise to (total) functions.
- We can instead define a semantics as a function to partial functions:

Expressiveness

 \blacktriangleright Equivalent to Turing machines, λ -calculus, ...

Summary

- ▶ Inductive definitions:
 - ▶ Functions defined by primitive recursion.
 - Proofs by structural induction.
- ▶ Two models of computation:
 - ▶ PRF.
 - ▶ The recursive functions.