Lecture
 Models of Computation (DIT310, TDA184)

Nils Anders Danielsson

2016-10-31

Can every function be implemented?

- No (given some assumptions).
- This lecture: Two proofs (sketches).

General information

See the course web page.

Comparing
sets' sizes

Injections

- Definition: $f: A \rightarrow B$ is injective if $\forall x, y: A$. $f x=f y$ implies $x=y$.
- If there is an injection from A to B, then B is at least as "large" as A.

Surjections

- Definition: $f: A \rightarrow B$ is surjective if $\forall b: B . \exists a: A . f a=b$.
- If there is a surjection from A to B, then there is an injection from B to A (assuming the axiom of choice).
- Thus, if there is a surjection from A to B, then A is at least as "large" as B.

Left/right inverses

For functions $f: A \rightarrow B, g: B \rightarrow A$:

- Definition: g is a left inverse of f if $\forall a: A . g(f a)=a$.
- Definition: g is a right inverse of f if $\forall b: B . f(g b)=b$.
- If f has a left inverse, then it is injective.
- If f has a right inverse, then it is surjective.

Bijections

- Definition: $f: A \rightarrow B$ is bijective if it is both injective and surjective.
- A function is bijective iff it has a left and right inverse.
- If there is a bijection from A to B, then A and B have the same "size".

Quiz

Which of the following functions are injective? Surjective?

$$
\begin{aligned}
& \text { } f: \mathbb{N} \rightarrow \mathbb{N}, f n=n+1 . \\
& \rightarrow g: \mathbb{Z} \rightarrow \mathbb{Z}, g i=i+1 .
\end{aligned}
$$

$$
h: \mathbb{N} \rightarrow \text { Bool, } h n= \begin{cases}\text { true, } & \text { if } n \text { is even, }, \\ \text { false, } & \text { otherwise. }\end{cases}
$$

Respond at http://pingo.upb.de/, using a code that I provide.

Countable, uncountable

Countable sets

- A is countable if there is an injection from A to \mathbb{N}.
- If there is no such injection, then A is uncountable.
- A is countably infinite if there is a bijection from A to \mathbb{N}.

Countable sets

- There is an injection from A to B iff $A=\emptyset$ or there is a surjection from B to A (assuming the axiom of choice).
- Thus A is countable iff
$A=\emptyset$ or there is a surjection from \mathbb{N} to A.

The set of finite strings of characters is infinite. Is it countable?

- Yes.
- No.

If A is countable, then List A is countable.

Proof sketch:

- We are given an injection $f: A \rightarrow \mathbb{N}$.
- Define g : List $A \rightarrow \mathbb{N}$ by

$$
\begin{aligned}
& g\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \\
& 2^{1+f x_{1}} 3^{1+f x_{2}} \cdots p_{n}^{1+f x_{n}}
\end{aligned}
$$

where p_{n} is the n-th prime number.

- By the fundamental theorem of arithmetic and the injectivity of f we get that g is injective.

Uncountable sets

- Is every set countable?
- No.
- Diagonalisation can be used to show that certain sets are uncountable.

$\mathbb{N} \rightarrow \mathbb{N}$ is uncountable

Proof (using the axiom of choice):

- Assume that $\mathbb{N} \rightarrow \mathbb{N}$ is countable.
- The set is non-empty, so we get a surjection $f: \mathbb{N} \rightarrow(\mathbb{N} \rightarrow \mathbb{N})$.
- Define $g: \mathbb{N} \rightarrow \mathbb{N}$ by $g n=f n n+1$.
- By surjectivity we get that $g=f i$ for some i.
- Thus $f i i=g i=f i i+1$, which is impossible.

Diagonalisation

The function g differs from every function enumerated by f on the "diagonal":

	0	1	2	3	\cdots
$f 0$	+1				
$f 1$		+1			
$f 2$			+1		
$f 3$				+1	
\vdots					

Not every function is computable

Proof sketch (classical):

- The set of programs of a typical programming language is countable.
- There is no surjection from \mathbb{N} to $\mathbb{N} \rightarrow \mathbb{N}$.
- Thus there is no surjection from programs to $\mathbb{N} \rightarrow \mathbb{N}$.
- Thus, however you give semantics to programs, it is not the case that every function is the semantics of some program.

Quiz

If we define $g n=f n(2 n)+1$, does the diagonalisation argument still work? [BN]

	0	1	2	3	4	5	6	\cdots
$f 0$	+1							
$f 1$			+1					
$f 2$					+1			
$f 3$							+1	
\vdots								

The halting problem

Uncomputable functions

- Can we find an explicit example of a function that cannot be computed?
- What does "can be computed" mean?
- Let us restrict attention to a
"typical" programming language.
- In that case the answer is yes.
- A standard example is the halting problem.

The halting problem
Given the source code of a program and its input, determine whether the program will halt when run with the given input.

The halting problem is not computable

Proof sketch (with hidden assumptions):

- Assume that the halting problem is computed by halts.
- Define $p x=$ if halts $x x$ then loop else skip.
- Consider the application $p\ulcorner p\urcorner$, where $\ulcorner p\urcorner$ is the source code of p.
- The result of halts $\ulcorner p\urcorner\ulcorner p\urcorner$ must be true or false.

Can the result of halts ${ }^{\ulcorner } p^{\urcorner}\ulcorner p\urcorner$ be true?

- Yes.
- No.

The halting problem is not computable

Proof sketch (continued):

- If halts $\left.{ }^{\ulcorner } p\right\urcorner\ulcorner p\urcorner=$ true, then:
- $p\ulcorner p\urcorner$ terminates (specification of halts).
- $p\ulcorner p\urcorner=$ loop, which does not terminate.
- If halts $\left.{ }^{\ulcorner } p\right\urcorner\ulcorner p\urcorner=$ false, then:
- $p\ulcorner p\urcorner$ does not terminate.
- $p\ulcorner p\urcorner=s k i p$, which does terminate.
- Either way, we get a contradiction.

Models of computation

Models of computation

- The proof is based on some assumptions.
- For instance, the programming language allows us to define if-then-else and loop, with the intended semantics.
- Later in the course we will be more precise.
- To make it easier to study questions of computability we will use idealised models of computation.

Models of computation

One model:

- The primitive recursive functions.
- Functional in character.
- All programs terminate.

Models of computation

Another model:

- A lambda calculus with pattern matching called χ.
- Functional in character.
- Some programs do not terminate.

Models of computation

Yet another model:

- Turing machines.
- Imperative in character.
- Some programs do not terminate.

The
 Church-Turing
 thesis

Models of computation

- How are these models related?
- Can one say anything about programming in general?
- It has been noted that many models of computation are, in some sense, equivalent:
- Turing machines.
- The (untyped) λ-calculus.
- The recursive functions.

The Church-Turing thesis

Every effectively calculable function on the positive integers can be computed using a Turing machine.

The Church-Turing thesis

Every effectively calculable function on the positive integers can be computed using a Turing machine.

- This is one variant of the thesis.
- We will define "can be computed using a Turing machine" more precisely later.
- There are equivalent statements for λ-expressions, recursive functions, and so on.

Effectively calculable

"Effectively calculable" means roughly that the function can be computed by a human being

- following exact instructions, with a finite description,
- in finite (but perhaps very long) time,
- using an unlimited amount of pencil and paper,
- and no ingenuity.
(See Copeland.)

The Church-Turing thesis

- The thesis is a conjecture.
- "Effectively calculable" is an intuitive notion, not a formal definition.
- However, the thesis is widely believed to be true.

Turing-complete

A programming language is Turing-complete if every Turing machine can be simulated using a program written in this language.

Turing-complete

A programming language is Turing-complete if every Turing machine can be simulated using a program written in this language.

- This is one variant of the definition.
- We have not specified what it means to simulate a Turing machine.

$$
\begin{gathered}
\text { Only } \\
\text { terminating } \\
\text { programs? }
\end{gathered}
$$

Only terminating programs?

- Every primitive recursive function terminates.
- Easy to solve the halting problem!
- Can we have a model of computation that includes exactly those functions on the natural numbers that can be implemented using Turing machines that always halt?

Only terminating programs?

- Every primitive recursive function terminates.
- Easy to solve the halting problem!
- Can we have a model of computation that includes exactly those functions on the natural numbers that can be implemented using Turing machines that always halt?
- No (given some assumptions).

Only terminating programs?

The following assumptions are contradictory:

- The set of valid programs $\operatorname{Prog} \subseteq \mathbb{N}$.
- For every computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ there is a program ${ } f\urcorner$: Prog.
- There is a computable function eval $: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ satisfying eval $\ulcorner f\urcorner n=f n$.
(See Brown and Palsberg.)

Only terminating programs?

Proof sketch:

- Define the computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f n=$ eval $n n+1$.
- We get

$$
\begin{aligned}
& f\ulcorner f\urcorner \\
= & e v a l\ulcorner f\urcorner\ulcorner f\urcorner+1 \\
= & f\ulcorner f\urcorner+1,
\end{aligned}
$$

which is impossible.

Summary

- Injections, surjections, bijections.
- Countable and uncountable sets.
- Diagonalisation.
- The halting problem.
- Models of computation.
- The Church-Turing thesis.

Summary

- Injections, surjections, bijections.
- Countable and uncountable sets.
- Diagonalisation.
- The halting problem.
- Models of computation.
- The Church-Turing thesis.

Please try to solve the recommended exercises before coming to the tutorial on Wednesday.

