
Bioinformatics (MVE360)

Graham J.L. Kemp

18 January 2016

Graham J.L. Kemp Bioinformatics (MVE360)

Content

The course covers basic methods used in sequence analysis such as
pairwise and multiple alignment, searching databases for sequence
similarity, profiles, pattern matching, hidden Markov models, RNA
bioinformatics, gene prediction methods and principles for
molecular phylogeny.
The course includes modern high-throughput sequencing
techniques and their applications, as well as molecular biology
databases and different systems to query such databases.
The course considers theoretical principles as well as how existing
programs are being used by bioinformaticians.

Graham J.L. Kemp Bioinformatics (MVE360)

Learning outcomes (1)

After completing this course, you should be able to:

◮ implement solutions to basic bioinformatics problems

◮ discuss the use of bioinformatics in addressing a range of
biological questions

◮ describe how bioinformatics methods can be used to relate
sequence, structure and function

◮ discuss the technologies for modern high-throughput DNA
sequencing and their applications

◮ use and describe some central bioinformatics data and
information resources

Graham J.L. Kemp Bioinformatics (MVE360)

Learning outcomes (2)

◮ describe principles and algorithms of pairwise and multiple
alignments, and sequence database searching

◮ perform pattern matching in biomolecular sequences

◮ describe how evolutionary relationships can be inferred from
sequences (phylogenetics)

◮ describe the most important principles in gene prediction
methods

◮ describe basic principles of hidden Markov models and their
application in sequence analysis

Graham J.L. Kemp Bioinformatics (MVE360)

Assessment

Grades will be determined by a written exam at the end of the
course.
But in order to pass the course you must also submit solutions to
specified exercises:

◮ one small programming task will be set each week;

◮ an essay on next generation sequencing and metagenomics.

Graham J.L. Kemp Bioinformatics (MVE360)

Course home page

http://www.cse.chalmers.se/edu/year/2016/course/MVE360/

Graham J.L. Kemp Bioinformatics (MVE360)

What is bioinformatics?

“Research, development, or application of computational

tools and approaches for expanding the use of biological,

medical, behavioral or health data, including those to

acquire, store, organize, archive, analyze, or visualize

such data.”

“Bioinformatics applies principles of information sciences

and technologies to make the vast, diverse, and complex

life sciences data more understandable and useful.”

Working definition by the NIH Biomedical Information Science and
Technology Initiative Consortium, 2000
http://www.bisti.nih.gov/docs/CompuBioDef.pdf

Graham J.L. Kemp Bioinformatics (MVE360)

What is biology?

Ecosystem Rain forest, desert, fresh water lake,
digestive tract of an animal

Community All species in an ecosystem
Population All individuals of a single species
Organism One single individual
Organ System A specialised functional system of an organism,

e.g. nervous system or immune system
Organ A specialised structural system of an organism,

e.g. brain or kidney
Tissue A specialised substructure of an organ,

e.g. nervous tissue, smooth muscle
Cell A single cell, e.g. neuron, skin cell, stem cell, bacteria
Molecule e.g. protein, DNA, RNA, sugar, fatty acid,

metabolites, pharmaceutical drugs

Graham J.L. Kemp Bioinformatics (MVE360)

Addressing biological questions

Biological
questions

Computational
methods

Computational
scientists

Experimental
methods

Bioscientists

Data

Graham J.L. Kemp Bioinformatics (MVE360)

Sequences, structures and systems

Sequences

◮ Nucleic acids (DNA and RNA) and proteins are (unbranched)
polymers. Their composition can be described by the sequence
of units (nucleotides or amino acid residues) in a chain.

Structures

◮ Three-dimensional structures can give insights into the
molecular basis of biological functions.

Systems

◮ Biological processes consist of the coordinated actions of
molecules.

Graham J.L. Kemp Bioinformatics (MVE360)

Biological sequences: some experimental methods

◮ DNA sequencing

◮ Protein sequencing

◮ Next-generation sequencing (NGS)

Graham J.L. Kemp Bioinformatics (MVE360)

Biological sequences: some questions

◮ How similar are a pair of sequences?

◮ Identify the corresponding units in a pair of homologous
molecules that have undergone substitutions and
insertions/deletions during their evolutionary history (pairwise
sequence alignment).

◮ Given a new sequence, has anything similar (in whole or part)
been seen before?

◮ Reconstruct a phylogenetic tree from the sequences of a set of
homologous molecules.

◮ Given the sequences of many overlapping DNA fragments
from a single organism, assemble them to reconstruct a full
genome.

◮ Given the sequences of many DNA fragments from a mixture
of organisms, identify the species present in the mixture.

Graham J.L. Kemp Bioinformatics (MVE360)

Biological structures: some experimental methods

Find the atomic structure of a macromolecule or complex

◮ X-ray crystallography

◮ Nuclear magnetic resonance (NMR) spectroscopy

Identify a low-resolution “envelope” enclosing a large
macromolecular complex

◮ Cryo-electron microscopy

◮ Small-angle x-ray scattering

Graham J.L. Kemp Bioinformatics (MVE360)

Biological structures: some questions

◮ Can differences in the functions of two similar proteins be
explained by differences in their structures?

◮ Can a drug be designed to fit into the active site of a target
protein?

◮ Can the safety and efficacy of a potential therapeutic protein
be predicted from its structure?

◮ Can the function of a protein be altered by changing its
composition, and hence its structure?

◮ Can a protein’s structure be predicted from its sequence?
◮ the protein folding problem

◮ Given the structures of two proteins, will they associate with
one another? If so, how will they fit together?

◮ the protein docking problem

Graham J.L. Kemp Bioinformatics (MVE360)

Biological systems: some experimental methods

Which mRNA molecules are being expressed?

◮ Microarray gene expression

◮ RNA-Seq

Which proteins are being expressed?

◮ (2-D) gel electrophoresis

◮ Mass spectrometry

In which tissue(s) are particular genes expressed?

◮ in situ hybridization

Graham J.L. Kemp Bioinformatics (MVE360)

Biological systems: some questions

◮ Which genes/proteins are co-expressed (i.e. have similar
expression profiles)?

◮ Which genes are expressed in tumour cells but not in healthy
cells?

◮ If a gene is ”knocked out”, will an organism survive, and how
will the expression of other genes be affected?

◮ Can protein expression profiles identify proteins that could be
targets for drug development?

◮ Can an individual’s expression profile indicate whether they
are likely to respond to a particular therapeutic treatment?

◮ How do biological networks respond to injury or to treatment
with a therapeutic drug?

Graham J.L. Kemp Bioinformatics (MVE360)

‘‘Scripting: Higher Level Programming for the 21st Centur y’’
(John Ousterhout)

http://www.tcl.tk/doc/scr ipting.html

For the last fifteen years a fundamental change has been occurring in the
way people write computer programs. The change is a transition from
system programming languages such as C or C++ to scripting languages
such as Per l or Tcl. Although many people are participating in the change,
fe w people realize that it is occurring and even few er people know why it
is happening. This article is an opinion piece that explains why scr ipting
languages will handle many of the programming tasks of the next century
better than system programming languages.

Scr ipting languages are designed for different tasks than system
programming languages, and this leads to fundamental differences in the
languages.

Graham Kemp, Chalmers University of Technology

‘‘Scripting: Higher Level Programming for the 21st Century’’
(John Ousterhout)

Graham Kemp, Chalmers University of Technology

‘‘Scripting: Higher Level Programming for the 21st Century’’
(John Ousterhout)

In deciding whether to use a scripting language or a system programming
language for a particular task, consider the following questions:

• Is the application’s main task to connect together pre-existing
components?

• Will the application manipulate a var iety of different kinds of things?
• Does the application include a graphical user interface?
• Does the application do a lot of string manipulation?
• Will the application’s functions evolve rapidly over time?
• Does the application need to be extensible?

"Yes" answers to these questions suggest that a scripting language will
work well for the application.

Graham Kemp, Chalmers University of Technology

‘‘Scripting: Higher Level Programming for the 21st Century’’
(John Ousterhout)

"Yes" answers to the following questions suggest that an application is
better suited to a system programming language:

• Does the application implement complex algor ithms or data
str uctures?

• Does the application manipulate large datasets (e.g. all the pixels in
an image) so that execution speed is critical?

• Are the application’s functions well-defined and changing slowly?

Scr ipting and system programming are symbiotic. Used together, they
produce programming environments of exceptional power: system
programming languages are used to create exciting components which
can then be assembled using scripting languages.

Graham Kemp, Chalmers University of Technology

Perl

Practical Extraction and Report Language

Graham Kemp, Chalmers University of Technology

hello.pl

#!/usr/bin/perl

print "Hello world\n";

simple .pl

#!/usr/bin/perl

$a = 2;
$b = 3;
$result = $a + $b;
print "Result is: $result\n";

Graham Kemp, Chalmers University of Technology

scalar1.pl

#!/usr/bin/perl -w

$a = 3;
$b = 5;

$rem1 = $a % $b; # 3
$rem2 = $b % $a; # 2

$a++; # 4
$b--; # 4

$n1 = $a + $b * 2; # 12
$n2 = ($a + $b) * 2; # 16
$n3 = 12 / $a / 2; # 1.5
$n4 = 12 / ($a / 2); # 6
$n5 = (2*2)**($b-2)**2; # 256

Graham Kemp, Chalmers University of Technology

Loops in Perl
$i = 1;
while ($i <= 4) {

print "$i\n";
$i++;

}

$i = 1;
until ($i > 4) {

print "$i\n";
$i++;

}

for ($i = 1 ; $i <= 4 ; $i++) {
print "$i\n";

}

foreach $i ((1,2,3,4)) {
print "$i\n";

}

Graham Kemp, Chalmers University of Technology

countdown.pl

#!/usr/bin/perl

#
file: countdown.pl
purpose: a 10 second countdown
#

$countdown = 10;
while ($countdown != 0) {

print "$countdown...\n";
sleep 1;
--$countdown;

}
print "BOOM!\n";

Graham Kemp, Chalmers University of Technology

scalar2.pl

#!/usr/bin/perl

$str1 = "Merry";
$str2 = "_Christmas! ";
$a = $str1 . "_Christmas!_"; # Merry_Christmas!_
$b = $str1 . $str2; # Merry_Christmas!_
$c = "$str1$str2"; # Merry_Christmas!_
$b .= $b; # Merry_Christmas!_Merry_Christmas!_
$d = $c x 2; # Merry_Christmas!_Merry_Christmas!_
$e = chop($str1); # y
$f = length($str1); # 4
$g = lc($str1); # merr
$h = uc($str1); # MERR
$i = substr($a,0,3); # Mer
$j = substr($a,-4,2); # as
$k = index($a,"m"); # 12

Graham Kemp, Chalmers University of Technology

string1.pl

#!/usr/bin/perl

$empty = "";
$a = "Bioinformatics";
$b = "\"Perl Programming\"\n";
$me = "Graham\tChalmers\t6475\n";

print "$a $empty $b";
print $me;
print "\n";

Bioinformatics "Perl Programming"
Graham Chalmers 6475

Graham Kemp, Chalmers University of Technology

string2.pl

#!/usr/bin/perl

#
demonstrate single-quoted strings
#

$empty = ’’;
$a = ’Bioinformatics’;
$b = ’\"Perl Programming\"\n’;
$me = ’Graham\tChalmers\t6475\n’;

print "$a $empty $b";
print $me;
print "\n";

Bioinformatics \"Perl Programming\"\nGraham\tChalmers\t6475\n

Graham Kemp, Chalmers University of Technology

cir cle.pl

#!/usr/bin/perl -w

$pi = 3.1415925;

print "Please type in the radius: ";
$radius = <STDIN>;
chomp($radius);

$area = $pi * $radius * $radius;
$circ = 2 * $pi * $radius;

print "A circle of radius $radius has area $area\n",
"and circumference $circ\n";

Please type in the radius: 4
A circle of radius 4 has area 50.26548
and circumference 25.13274

Graham Kemp, Chalmers University of Technology

Opening files

open(SOURCE1, "file1"); # reading

open(SOURCE1, "<file2"); # reading

open(RESULT1, ">output1"); # writing (create or overwrite)

open(RESULT2, ">>output2"); # writing (create or append)

open(RESULT3, "+<inoutfile"); # reading/writing

open(SOURCE1, "file1") or die "Unable to open file: $!";
open(SOURCE1, "file1") || die "Unable to open file: $!";

close(SOURCE1);

Graham Kemp, Chalmers University of Technology

cop yfile .pl
#!/usr/bin/perl -w

open(SOURCE, "file_A") || die "cannot open file_A: $!";
open(TARGET, ">file_B") || die "cannot open file_B: $!";
while ($line = <SOURCE>) {

print TARGET $line;
}
close(SOURCE);
close(TARGET);

#!/usr/bin/perl -w

open(SOURCE, "file_A") || die "cannot open file_A: $!";
open(TARGET, ">file_B") || die "cannot open file_B: $!";
while (<SOURCE>) {

print TARGET; }
close(SOURCE);
close(TARGET);

Graham Kemp, Chalmers University of Technology

Command line arguments

#!/usr/bin/perl

#
file: arguments.pl
purpose: prints the command line arguments
#

print "Command line arguments are: @ARGV\n";
print "The first argument is: $ARGV[0]\n";

Variables beginning with an @ symbol are array var iables.
(Scalar) element at position i within an array @a is accessed by $a[i-1]

Graham Kemp, Chalmers University of Technology

mycat.pl

#!/usr/bin/perl
while ($_ = <ARGV>) {

print $_;
}

#!/usr/bin/perl
while (<ARGV>) {

print;
}

#!/usr/bin/perl
while (<>) {

print;
}

Graham Kemp, Chalmers University of Technology

Conditional statements

if (expression) {
do if true

}

if (expression) {
do if true

} else {
do if flase

}

if (expression1) {
do if expression1 is true

} elsif (expression2) {
do if expression1 is false and expression2 is true

} else {
do if expression1 is false and expression2 is false

}

Graham Kemp, Chalmers University of Technology

Comparison operators

Operation Numeric String
equal == eq
not equal != ne
less than < lt
greater than > gt
less than or equal <= le
greater than or equal >= ge

What is true?
• anything except "" and "0"
• any number except 0
• any non-empty array

Graham Kemp, Chalmers University of Technology

Executing Perl programs

You can invoke the Per l inter preter directly, e.g.

perl program.pl

Or, if the first line of the program contains "#!" followed by the path of the
Perl inter preter, and the program file is executable, you can just type the
name of the program file on the command line, e.g.

./program.pl

To make a program file executable, use the chmod command, e.g.

chmod u+x program.pl

Graham Kemp, Chalmers University of Technology

