
CHALMERS UNIVERSITY OF TECHNOLOGY

Examination in Bioinformatics, MVE360

Monday 10 March 2014, 08:30-12:30

Examiner: Graham Kemp (telephone 772 54 11, room 6475 EDIT)
The examiner will visit the exam room at 09:30 and 11:30.

Results: Will be published by 31 March 2014 at the latest.

Exam review: See course web page for time and place:
http://www.cse.chalmers.se/edu/year/2014/course/MVE360/

Grades: Grades for Chalmers students are normally determined as follows:
≥ 48 for grade 5; ≥ 36 for grade 4; ≥ 24 for grade 3.

Grades for GU students are normally determined as follows:
≥ 42 for grade VG; ≥ 24 for grade G.

Help material: None
English language dictionaries are allowed.

Specific instructions:

• Check that you have received:

– question paper (5 pages)

– Perl reference guide (4 pages)

– HMM formula collection (3 pages)

• Please answer in English where possible. You may clarify your answers in Swedish if you
are not confident you have expressed yourself correctly in English.

• Begin the answer to each question on a new page.

• Write clearly; unreadable = wrong!

• Fewer points are given for unnecessarily complicated solutions.

• Indicate clearly if you make any assumptions that are not given in the question.

• Write the page number and question number on every page.

1 of 5

5 p
Question 1. a) i) What is the Hamming distance between strings “RNA” and “NAR”?

Explain your answer.
ii) What is the Levenshtein distance between strings “RNA” and “NAR”?

Explain your answer.
(2p)

b) i) Assuming a match score of 2, a mismatch score of -1 and a gap score of -2, derive
the score matrix for a global alignment of “RNA” and “NAR”.

ii) Assuming a match score of 2, a mismatch score of -1 and a gap score of -2, derive
the score matrix for a local alignment of “RNA” and “NAR”.

(3p)

4 p
Question 2. a) Discuss how likely these three different unrooted trees are, having in mind the prin-

ciple of parsimony.

(2p)

b) You have access to the following sequences from a human individual: (1) a ribosomal
RNA, (2) the amino acid sequence of pyruvate dehydrogenase and (3) mitochondrial
DNA.
What sequences would be suitable to examine these relationships:

i) The relationship between this human individual and other human individuals?
ii) The relationship between human (man) and other animals like fishes and worms?

(2p)

2 of 5

9 p
Question 3. Here is the BLOSUM62 substitution matrix:

A R N D C Q E G H I L K M F P S T W Y V
A 4
R -1 5
N -2 0 6
D -2 -2 1 6
C 0 -3 -3 -3 9
Q -1 1 0 0 -3 5
E -1 0 0 2 -4 2 5
G 0 -2 0 -1 -3 -2 -2 6
H -2 0 1 -1 -3 0 0 -2 8
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

a) Calculate the score of the following multiple alignment using the BLOSUM62 matrix
and the sum of pairs method:

Sequence 1: CNRN
Sequence 2: CADN
Sequence 3: CANA

(2p)

b) Complete the following Perl program so that it reads a multiple alignment (following
the END token) and calculates its score using the BLOSUM62 matrix and the
sum of pairs method. (You may assume that all sequences in the multiple alignment
will be the same length and that the alignment will not contain gaps. You may not
make any assumptions about the number of sequences or columns in the alignment.)

#!/usr/bin/perl -w

Assume that the full matrix is given; only part is shown here
%blosum62 = (AA=>4, AR=>-1, AN=>-2, AD=>-2, AC=>0,

RA=>-1, RR=>5, RN=>0, RD=>-2, RC=>-3,
NA=>-2, NR=>0, NN=>6, ND=>-1, NC=>-3,
DA=>-2, DR=>-2, DN=>-1, DD=>6, DC=>-3,
CA=>0, CR=>-3, CN=>-3, CD=>-3, CC=>9);

Your answer goes here

__END__
CNRN
CADN
CANA

(7p)

3 of 5

3 p
Question 4. What output is printed when the following program is run?

#!/usr/bin/perl -w

$s = "VLVGVVVAATLSA"; if ($s =~ /(V.V.A)/) { print "a) $1\n"; }
$s = "VLVGVVVAATLSA"; if ($s =~ /(V.*V)/) { print "b) $1\n"; }
$s = "VLVGVVVAATLSA"; if ($s =~ /(.)\1(.)\2/) { print "c) $1, $2\n"; }

$s = "VLVGVVVAATLSA"; $s =~ s/V./X/g ; print "d) $s\n";
$s = "VLVGVVVAATLSA"; $s =~ s/[VL]+/X/g ; print "e) $s\n";
$s = "VLVGVVVAATLSA"; $s =~ tr/VA/AT/ ; print "f) $s\n";

(3p)

9 p
Question 5. Here is an extract from the PROSITE documentation:

The patterns are described using the following conventions:

• The standard IUPAC one-letter codes for the amino acids are used.
• The symbol ’x’ is used for a position where any amino acid is accepted.
• Ambiguities are indicated by listing the acceptable amino acids for a given

position, between square parentheses ’[]’. For example: [ALT] stands for
Ala or Leu or Thr.
• Ambiguities are also indicated by listing between a pair of curly brackets ’{
}’ the amino acids that are not accepted at a given position. For example:
{AM} stands for any amino acid except Ala and Met.
• Each element in a pattern is separated from its neighbor by a ’-’.
• Repetition of an element of the pattern can be indicated by following that

element with a numerical value or a numerical range between parenthesis.
Examples: x(3) corresponds to x-x-x, x(2,4) corresponds to x-x or x-x-x or
x-x-x-x.
• When a pattern is restricted to either the N- or C-terminal of a sequence,

that pattern either starts with a ’<’ symbol or respectively ends with a ’>’
symbol.
• A period ends the pattern.

a) Write Perl regular expressions that are equivalent to the following PROSITE patterns:

[AC]-x-V-x(4)-{ED}.

<A-x-[ST](2)-x(0,1)-V.

(1p)

b) Write a Perl program that prompts the user to type in a PROSITE pattern, translates
that pattern into a Perl regular expression, and then tests whether the string in
variable $sequence matches the pattern (you can assume that variable $sequence
already contains a protein sequence — you do not have to write code to read a
sequence from an external file when answering this question). The program should
print either “Sequence matches” or “Sequence does not match”.
For full marks, your program should be able to deal with all of the PROSITE pattern
elements that are listed above.
(8p)

4 of 5

6 p
Question 6. How would you estimate HMM parameters if all you have is the observed sequence and

no state sequence? Write an algorithm and the respective equations. Explain the steps.

(6p)

6 p
Question 7. Consider the following HMM:

a) Once you have the parameters, how do you decode a newly obtained DNA sequence?
(2p)

b) Using the HMM shown above, estimate the most probable state sequence for the
observed sequence Y = ATCTA. (Tip: solve parts (b) and (c) of this question at the
same time.)
(2p)

c) Show the tabular computation used above, with arrows indicating the optimal path,
i.e. the most probable state sequence.
(2p)

4 p
Question 8. How do you use an HMM to align two probable homologous DNA sequences?

Describe the necessary state space and the algorithm.

(4p)

14 p
Question 9. a) Identify one application of metagenomics combined with next generation sequencing,

and give a brief summary.
(4p)

b) Describe and discuss the Illumina next-generation sequencing technique. Computa-
tional aspects should be included in the discussion.
(6p)

c) What is a paired-end sequencing technique, and how can a paired-end approach help
in trying to map sequences to a known genome, when the purpose is to identify SNP
alleles?
(4p)

5 of 5

Perl 5 Reference Guide (Extract) http://www.cs.chalmers.se/~kemp/teaching/UMF017/2005-2006/loca...

1 of 8 11/07/05 11:18 AM

Perl 5 Reference Guide (Extract)

Literals

Numeric:
123
1_234
123.4
5E-10
0xff (hex)
0377 (octal)

String:
’abc’

literal string, no variable interpolation or escape characters, except \’ and \\ . Also: q/abc/ .
Almost any pair of delimiters can be used instead of / .../ .

"abc"
Variables are interpolated and escape sequences are processed. Also: qq/abc/ .
Escape sequences: \t (Tab), \n (Newline), \r (Return), \f (Formfeed), \b (Backspace), \a
(Alarm), \e (Escape), \033 (octal), \x1b (hex), \c[(control)
\l and \u lowercase/uppercase the following character. \L and \U lowercase/uppercase until a \E
is encountered. \Q quote regular expression characters until a \E is encountered.

‘ COMMAND‘
evaluates to the output of the COMMAND. Also: qx/ COMMAND/ .

Array:
(1, 2, 3) . () is an empty array.
(1..4) is the same as (1,2,3,4) ,
likewise (’a’..’z’) .
qw/foo bar .../ is the same as (’foo’,’bar’, ...) .

Array reference:
[1,2,3]

Hash (associative array):
(KEY1, VAL1 , KEY2, VAL2 , ...)
Also (KEY1=> VAL1 , KEY2=> VAL2 , ...)

Hash reference:
{ KEY1, VAL1 , KEY2, VAL2 , ...}

Code reference:
sub { STATEMENTS}

Filehandles:
<STDIN>, <STDOUT>, <STDERR>, <ARGV>, <DATA>.
User-specified: HANDLE, $VAR.

Globs:
<PATTERN> evaluates to all filenames according to the pattern. Use <${ VAR}> or glob $VAR to glob from
a variable.

Here-Is:
<<IDENTIFIER
Shell-style "here document."

Special tokens:
__FILE__ : filename; __LINE__ : line number; __END__: end of program; remaining lines can be read
using the filehandle DATA.

Variables

$var a simple scalar variable.
$var[28] 29th element of array @var.
$p = \@var now $p is a reference to array @var.
$$p[28] 29th element of array referenced by $p.

Also, $p->[28] .
$var[-1] last element of array @var.
$var[$i][$j] $j th element of the $i th element of array @var.
$var{’Feb’} one value from hash (associative array) %var .
$p = \%var now $p is a reference to hash %var .

Perl 5 Reference Guide (Extract) http://www.cs.chalmers.se/~kemp/teaching/UMF017/2005-2006/loca...

2 of 8 11/07/05 11:18 AM

$$p{’Fe b’} a value from hash referenced by $p.
Also, $p->{’Feb’} .

$#var last index of array @var.
@var the entire array; in a scalar context, the number of elements in the array.
@var[3,4,5] a slice of array @var.
@var{’a’,’b’} a slice of %var ; same as ($var{’a’},$var{’b’}) .
%var the entire hash; in a scalar context, true if the hash has elements.
$var{’a’,1, ...} emulates a multidimensional array.
(’a’ ...’z’)[4,7,9] a slice of an array literal.
PKG:: VAR a variable from a package, e.g., $pkg::var , @pkg::ary .
\ OBJECT reference to an object, e.g., \$var , \%hash .
* NAME refers to all objects represented by NAME.

*n1 = *n2 makes n1 an alias for n2.
*n1 = $n2 makes $n1 an alias for $n2 .

You can always use a { BLOCK} returning the right type of reference instead of the variable identifier, e.g., ${ ...} ,
&{ ...} . $$p is just a shorthand for ${$p} .

Operators

** Exponentiation
+ - * / Addition, subtraction, multiplication, division
% Modulo division
& | ^ Bitwise AND, bitwise OR, bitwise exclusive OR
>> << Bitwise shift right, bitwise shift left
|| && Logical OR, logical AND
. Concatenation of two strings
x Returns a string or array consisting of the left operand (an array or a string) repeated the number of

times specified by the right operand
All of the above operators also have an assignment operator, e.g., .=
-> Dereference operator
\ Reference (unary)
! ~ Negation (unary), bitwise complement (unary)
++ -- Auto-increment (magical on strings), auto-decrement
== != Numeric equality, inequality
eq ne String equality, inequality
< > Numeric less than, greater than
lt gt String less than, greater than
<= >= Numeric less (greater) than or equal to
le ge String less (greater) than or equal to
<=> cmp Numeric (string) compare. Returns -1, 0, 1.
=~ !~ Search pattern, substitution, or translation (negated)
.. Range (scalar context) or enumeration (array context)
?: Alternation (if-then-else) operator
, Comma operator, also list element separator. You can also use =>.
not Low-precedence negation
and Low-precedence AND
or xor Low-precedence OR, exclusive OR

All Perl functions can be used as list operators, in which case they have very high or very low precedence,
depending on whether you look at the left or the right side of the operator. Only the operators not, and, or and
xor have lower precedence.

A "list" is a list of expressions, variables, or lists. An array variable or an array slice may always be used instead
of a list.

Parentheses can be added around the parameter lists to avoid precedence problems.

Statements

Every statement is an expression, optionally followed by a modifier, and terminated by a semicolon. The

Perl 5 Reference Guide (Extract) http://www.cs.chalmers.se/~kemp/teaching/UMF017/2005-2006/loca...

3 of 8 11/07/05 11:18 AM

semicolon may be omitted if the statement is the final one in a BLOCK.

Execution of expressions can depend on other expressions using one of the modifiers if , unless, while or until ,
for example:

EXPR1 if EXPR2 ;
EXPR1 until EXPR2 ;

The logical operators || , && or ?: also allow conditional execution:

EXPR1 || EXPR2 ;
EXPR1 ? EXPR2 : EXPR3 ;

Statements can be combined to form a BLOCK when enclosed in {} . Blocks may be used to control flow:

if (EXPR) BLOCK [[elsif (EXPR) BLOCK ...] else BLOCK]
unless (EXPR) BLOCK [else BLOCK]
[LABEL :] while (EXPR) BLOCK [continue BLOCK]
[LABEL :] until (EXPR) BLOCK [continue BLOCK]
[LABEL :] for (EXPR; EXPR; EXPR) BLOCK
[LABEL :] foreach VAR² (LIST) BLOCK
[LABEL :] BLOCK [continue BLOCK]

Program flow can be controlled with:

goto LABEL Continue execution at the specified label.
last [LABEL] Immediately exits the loop in question. Skips continue block.
next [LABEL] Starts the next iteration of the loop.
redo [LABEL] Restarts the loop block without evaluating the conditional again.

Special forms are:

do BLOCK while EXPR ;
do BLOCK until EXPR ;

which are guaranteed to perform BLOCK once before testing EXPR, and

do BLOCK

which effectively turns BLOCK into an expression.

Structure Conversion

pack TEMPLATE, LIST
Packs the values into a binary structure using TEMPLATE.

unpack TEMPLATE, EXPR
Unpacks the structure EXPR into an array, using TEMPLATE.

TEMPLATE is a sequence of characters as follows:

a / A ASCII string, null- / space-padded
b / B Bit string in ascending / descending order
c / C Native / unsigned char value
f / d Single / double float in native format
h / H Hex string, low / high nybble first
i / I Signed / unsigned integer value
l / L Signed / unsigned long value
n / N Short / long in network (big endian) byte order
s / S Signed / unsigned short value
u / P Uuencoded string / pointer to a string
v / V Short / long in VAX (little endian) byte order
x / @ Null byte / null fill until position
X Backup a byte

Each character may be followed by a decimal number that will be used as a repeat count; an asterisk (*) specifies

Perl 5 Reference Guide (Extract) http://www.cs.chalmers.se/~kemp/teaching/UMF017/2005-2006/loca...

4 of 8 11/07/05 11:18 AM

all remaining arguments. If the format is preceded with %N, unpack returns an N-bit checksum instead. Spaces
may be included in the template for readability purposes.

String Functions

chomp LIST²
Removes line endings from all elements of the list; returns the (total) number of characters removed.

chop LIST²
Chops off the last character on all elements of the list; returns the last chopped character.

crypt PLAINTEXT, SALT
Encrypts a string.

eval EXPR²
EXPR is parsed and executed as if it were a Perl program. The value returned is the value of the last
expression evaluated. If there is a syntax error or runtime error, an undefined string is returned by eval,
and $@ is set to the error message. See also eval in section Miscellaneous.

index STR, SUBSTR [, OFFSET]
Returns the position of SUBSTR in STR at or after OFFSET. If the substring is not found, returns -1 (but see
$[in section Special Variables).

length EXPR²
Returns the length in characters of the value of EXPR.

lc EXPR
Returns a lowercase version of EXPR.

lcfirst EXPR
Returns EXPR with the first character lowercase.

quotemeta EXPR
Returns EXPR with all regular expression metacharacters quoted.

rindex STR, SUBSTR [, OFFSET]
Returns the position of the last SUBSTR in STR at or before OFFSET.

substr EXPR, OFFSET [, LEN]
Extracts a substring of length LEN out of EXPR and returns it. If OFFSET is negative, counts from the end of
the string. May be assigned to.

uc EXPR
Returns an uppercased version of EXPR.

ucfirst EXPR
Returns EXPR with the first character uppercased.

Array and List Functions

delete $HASH{ KEY}
Deletes the specified value from the specified hash. Returns the deleted value unless HASH is tied to a
package that does not support this.

each %HASH
Returns a 2-element array consisting of the key and value for the next value of the hash. Entries are
returned in an apparently random order. After all values of the hash have been returned, a null array is
returned. The next call to each after that will start iterating again.

exists EXPR²
Checks if the specified hash key exists in its hash array.

grep EXPR, LIST
grep BLOCK LIST

Evaluates EXPR or BLOCK for each element of the LIST, locally setting $_ to refer to the element.
Modifying $_ will modify the corresponding element from LIST. Returns the array of elements from LIST
for which EXPR returned true.

join EXPR, LIST
Joins the separate strings of LIST into a single string with fields separated by the value of EXPR, and returns
the string.

keys %HASH
Returns an array with all of the keys of the named hash.

map EXPR, LIST
map BLOCK LIST

Evaluates EXPR or BLOCK for each element of the LIST, locally setting $_ to refer to the element.
Modifying $_ will modify the corresponding element from LIST. Returns the list of results.

pop @ARRAY
Pops off and returns the last value of the array.

push @ARRAY, LIST

Perl 5 Reference Guide (Extract) http://www.cs.chalmers.se/~kemp/teaching/UMF017/2005-2006/loca...

5 of 8 11/07/05 11:18 AM

Pushes the values of LIST onto the end of the array.
reverse LIST

In array context, returns the LIST in reverse order. In scalar context: returns the first element of LIST with
bytes reversed.

scalar @ARRAY
Returns the number of elements in the array.

scalar %HASH
Returns a true value if the hash has elements defined.

shift [@ARRAY]
Shifts the first value of the array off and returns it, shortening the array by 1 and moving everything down.
If @ARRAY is omitted, shifts @ARGV in main and @_ in subroutines.

sort [SUBROUTINE] LIST
Sorts the LIST and returns the sorted array value. SUBROUTINE, if specified, must return less than zero,
zero, or greater than zero, depending on how the elements of the array (available to the routine as $a and
$b) are to be ordered. SUBROUTINE may be the name of a user-defined routine, or a BLOCK.

splice @ARRAY, OFFSET [, LENGTH [, LIST]]
Removes the elements of @ARRAY designated by OFFSET and LENGTH, and replaces them with LIST (if
specified). Returns the elements removed.

split [PATTERN [, EXPR² [, LIMIT]]]
Splits a string into an array of strings, and returns it. If LIMIT is specified, splits into at most that number
of fields. If PATTERN is also omitted, splits at the whitespace. If not in array context, returns number of
fields and splits to @_. See also Search and Replace Functions.

unshift @ARRAY, LIST
Prepends list to the front of the array, and returns the number of elements in the new array.

values %HASH
Returns a normal array consisting of all the values of the named hash.

Regular Expressions

Each character matches itself, unless it is one of the special characters + ? . * ^ $ () [] { } | \ . The
special meaning of these characters can be escaped using a \ .

. matches an arbitrary character, but not a newline unless it is a single-line match (see m//s).
(...) groups a series of pattern elements to a single element.
^ matches the beginning of the target. In multiline mode (see m//m) also matches after every

newline character.
$ matches the end of the line. In multiline mode also matches before every newline character.
[...] denotes a class of characters to match. [^ ...] negates the class.
(... | ... | ...) matches one of the alternatives.
(?# TEXT) Comment.
(?: REGEXP) Like (REGEXP) but does not make back-references.
(?= REGEXP) Zero width positive look-ahead assertion.
(?! REGEXP) Zero width negative look-ahead assertion.
(? MODIFIER) Embedded pattern-match modifier. MODIFIER can be one or more of i, m, s, or x.

Quantified subpatterns match as many times as possible. When followed with a ? they match the minimum
number of times. These are the quantifiers:

+ matches the preceding pattern element one or more times.
? matches zero or one times.
* matches zero or more times.
{ N, M} denotes the minimum N and maximum M match count. { N} means exactly N times; { N,} means at

least N times.

A \ escapes any special meaning of the following character if non-alphanumeric, but it turns most alphanumeric
characters into something special:

\w matches alphanumeric, including _, \W matches non-alphanumeric.
\s matches whitespace, \S matches non-whitespace.
\d matches numeric, \D matches non-numeric.
\A matches the beginning of the string, \Z matches the end.
\b matches word boundaries, \B matches non-boundaries.
\G matches where the previous m//g search left off.
\n , \r , \f , \t etc. have their usual meaning.

Perl 5 Reference Guide (Extract) http://www.cs.chalmers.se/~kemp/teaching/UMF017/2005-2006/loca...

6 of 8 11/07/05 11:18 AM

\w , \s and \d may be used within character classes, \b denotes backspace in this context.

Back-references:

\1 ... \9 refer to matched subexpressions, grouped with () , inside the match.
\10 and up can also be used if the pattern matches that many subexpressions.

See also $1 ... $9, $+ , $& , $‘ , and $’ in section Special Variables.

With modifier x, whitespace can be used in the patterns for readability purposes.

Search and Replace Functions

[EXPR =~] [m] / PATTERN/ [g] [i] [m] [o] [s] [x]
Searches EXPR (default: $_) for a pattern. If you prepend an m you can use almost any pair of delimiters
instead of the slashes. If used in array context, an array is returned consisting of the subexpressions
matched by the parentheses in the pattern, i.e., ($1,$2,$3, ...) .
Optional modifiers: g matches as many times as possible; i searches in a case-insensitive manner; o
interpolates variables only once. m treats the string as multiple lines; s treats the string as a single line; x
allows for regular expression extensions.
If PATTERN is empty, the most recent pattern from a previous match or replacement is used.
With g the match can be used as an iterator in scalar context.

?PATTERN?
This is just like the / PATTERN/ search, except that it matches only once between calls to the reset
operator.

[$VAR =~] s/ PATTERN/ REPLACEMENT/ [e] [g] [i] [m] [o] [s] [x]
Searches a string for a pattern, and if found, replaces that pattern with the replacement text. It returns the
number of substitutions made, if any; if no substitutions are made, it returns false.
Optional modifiers: g replaces all occurrences of the pattern; e evaluates the replacement string as a Perl
expression; for any other modifiers, see / PATTERN/ matching. Almost any delimiter may replace the
slashes; if single quotes are used, no interpretation is done on the strings between the delimiters, otherwise
the strings are interpolated as if inside double quotes.
If bracketing delimiters are used, PATTERN and REPLACEMENT may have their own delimiters, e.g.,
s(foo)[bar] . If PATTERN is empty, the most recent pattern from a previous match or replacement is
used.

[$VAR =~] tr / SEARCHLIST/ REPLACEMENTLIST/ [c] [d] [s]
Translates all occurrences of the characters found in the search list with the corresponding character in the
replacement list. It returns the number of characters replaced. y may be used instead of tr .
Optional modifiers: c complements the SEARCHLIST; d deletes all characters found in SEARCHLIST that do
not have a corresponding character in REPLACEMENTLIST; s squeezes all sequences of characters that are
translated into the same target character into one occurrence of this character.

pos SCALAR
Returns the position where the last m//g search left off for SCALAR. May be assigned to.

study [$VAR²]
Study the scalar variable $VAR in anticipation of performing many pattern matches on its contents before
the variable is next modified.

Input / Output

In input/output operations, FILEHANDLE may be a filehandle as opened by the open operator, a predefined
filehandle (e.g., STDOUT) or a scalar variable that evaluates to the name of a filehandle to be used.

<FILEHANDLE>
In scalar context, reads a single line from the file opened on FILEHANDLE. In array context, reads the
whole file.

< >
Reads from the input stream formed by the files specified in @ARGV, or standard input if no arguments
were supplied.

close FILEHANDLE
Closes the file or pipe associated with the filehandle.

open FILEHANDLE [, FILENAME]
Opens a file and associates it with FILEHANDLE. If FILENAME is omitted, the scalar variable of the same
name as the FILEHANDLE must contain the filename.
The following filename conventions apply when opening a file.

Perl 5 Reference Guide (Extract) http://www.cs.chalmers.se/~kemp/teaching/UMF017/2005-2006/loca...

7 of 8 11/07/05 11:18 AM

" FILE" open FILE for input. Also "< FILE" .
"> FILE" open FILE for output, creating it if necessary.
">> FILE" open FILE in append mode.
"+< FILE" open FILE with read/write access (file must exist).
"+> FILE" open FILE with read/write access (file truncated).
"| CMD" opens a pipe to command CMD; forks if CMD is - .
" CMD|" opens a pipe from command CMD; forks if CMD is - .
FILE may be &FILEHND in which case the new filehandle is connected to the (previously opened) filehandle
FILEHND. If it is &=N, FILE will be connected to the given file descriptor. open returns undef upon failure,
true otherwise.
Returns a pair of connected pipes.

print [FILEHANDLE] [LIST²]
Equivalent to print FILEHANDLE sprintf LIST.

Special Variables

The following variables are global and should be localized in subroutines:
$_ The default input and pattern-searching space.
$. The current input line number of the last filehandle that was read.
$/ The input record separator, newline by default. May be multicharacter.
$, The output field separator for the print operator.
$" The separator that joins elements of arrays interpolated in strings.
$\ The output record separator for the print operator.
$# The output format for printed numbers. Deprecated.
$* Set to 1 to do multiline matching within strings. Deprecated, see the m and s modifiers in section

Search and Replace Functions.
$? The status returned by the last ‘ ...‘ command, pipe close or system operator.
$] The perl version number, e.g., 5.001 .
$[The index of the first element in an array, and of the first character in a substring. Default is 0.

Deprecated.
$; The subscript separator for multidimensional array emulation. Default is "\034 ".
$! If used in a numeric context, yields the current value of errno. If used in a string context, yields the

corresponding error string.
$@ The Perl error message from the last eval or do EXPR command.
$: The set of characters after which a string may be broken to fill continuation fields (starting with ^) in a

format.
$0 The name of the file containing the Perl script being executed. May be assigned to.
$$ The process ID of the currently executing Perl program. Altered (in the child process) by fork .
$< The real user ID of this process.
$> The effective user ID of this process.
$(The real group ID of this process.
$) The effective group ID of this process.
$^A The accumulator for formline and write operations.
$^D The debug flags as passed to perl using -D .
$^F The highest system file descriptor, ordinarily 2.
$^I In-place edit extension as passed to Perl using -i .
$^L Formfeed character used in formats.
$^P Internal debugging flag.
$^T The time (as delivered by time) when the program started. This value is used by the file test operators

-M, -A and -C .
$^W The value of the -w option as passed to Perl.
$^X The name by which the currently executing program was invoked.

The following variables are context dependent and need not be localized:
$% The current page number of the currently selected output channel.
$= The page length of the current output channel. Default is 60 lines.
$- The number of lines remaining on the page.
$~ The name of the current report format.
$^ The name of the current top-of-page format.
$| If set to nonzero, forces a flush after every write or print on the currently selected output channel.

Default is 0.
$ARGV The name of the current file when reading from <>.

Perl 5 Reference Guide (Extract) http://www.cs.chalmers.se/~kemp/teaching/UMF017/2005-2006/loca...

8 of 8 11/07/05 11:18 AM

The following variables are always local to the current block:
$& The string matched by the last successful pattern match.
$‘ The string preceding what was matched by the last successful match.
$’ The string following what was matched by the last successful match.
$+ The last bracket matched by the last search pattern.
$1...$9... Contain the subpatterns from the corresponding sets of parentheses in the last pattern successfully

matched. $10 ... and up are only available if the match contained that many subpatterns.

Special Arrays

@ARGV Contains the command-line arguments for the script (not including the command name).
@EXPORT Names the methods a package exports by default.
@EXPORT_OK Names the methods a package can export upon explicit request.
@INC Contains the list of places to look for Perl scripts to be evaluated by the do FILENAME and require

commands.
@ISA List of base classes of a package.
@_ Parameter array for subroutines. Also used by split if not in array context.
%ENV Contains the current environment.
%INC List of files that have been included with require or do.
%OVERLOAD Can be used to overload operators in a package.
%SIG Used to set signal handlers for various signals.

Text copyright © 1996 Johan Vromans
HTML copyright © 1996-2003 Rex Swain

HMM	formula	collection	

Standard HMMs

Hidden Markov Process: ��� = ��, … , ��

Observed process: ��� = ��, … , ��

State space: � = {
�, … ,
�}

Initial probabilities:
� = ���� = ��, � = 1, … , �

Transition probabilities: ��� = ������ = �|�� = ��, �, � ∈ �

Emission probabilities: ������������ = ����|�� = �, ������

����� , ���� =
� �� ���� ∏ ��"# ,�"��"���|��������$%

Forward Algorithm &��'� = ����� , �� = ��

Initialization: &��0� =
�, � = 1, … , �

Tabular computation: &��'� = ∑ &��' − 1���������|�����)�∈+ , � = 1,… , �, ' = 1,… , ,

Termination: &�(, + 1) = ∑ &�(,)����∈+ , � = 1,… ,�

Backward Algorithm .��'� = ������� |��
�, �� = �)

Initialization: .��, + 1� = 1, � = 1, … , �

Tabular computation: .��'� = ∑ .��' + 1�����������|���)�∈+ , � = 1,… ,�, ' = ,, , − 1,… ,0

Termination: none

The Viterbi Algorithm /��'� = max� "# ����� , �����, �� = ��

Initialization: /��0� =
�, � = 1, … , �

Tabular computation: /��'� = max�3�3� /��' − 1���������������� , � = 1, … , �, ' = 1, … , ,
 5��'� = argmax�3�3� /��' − 1����������������, � = 1, … , �, ' = 1, … , ,

Termination: /��, + 1� = max�3�3� /��,���� , � = 1, … , � 5��, + 1� = argmax�3�3� /��,���� , � = 1, … , �
Traceback: ����∗ = 5��, + 1�
 ��∗ = 5�"9 ∗ �' + 1�, ' = ,, , − 1, … ,0

The Baum-Welch Algorithm :��'� = ���� = ������ = ;<���=<���∑ ;>���=>���>∈? , � � 1,… ,�, ' � 1,… , ,

@���'� � ���� � �, ���� � ������, � � 1,… ,�, ' � 1,… , ,

Initialization: pick arbitrary model parameters 	
�, ��� , ��: �, � � 1,… ,��
Recursion:

1. E-phase: calculate the forward and the backward algorithms for the current parameter

settings.

2. M-phase: produce new parameter estimates using the re-estimation formulas below.

Re-estimation formulas:

B� � :��1�
�B�� � ∑ C<>���D# "E ∑ F<���D# "E

�G��H� � ∑ F>���D# "E ,I"EJ∑ F>���D# "E

Pair HMMs

State durations:

�KL , ML� � N�1,1�	if	�L � Q�1,0�	if	�L � R		�0,1�	if	�L � S

TL � UKVW
V$� , XL � UMVW

V$� 		

TY � XY � 0, TW � ,, XW � Z

The Viterbi algorithm for PHMMs

Initialization: /��0,0� =
� /��', 0� = /��0, [� = 0, ' > 0, [> 0

Tabular computation:

/]�', [� = �]��� , ^_������, ^�_��� ⋅ max N/]�' − 1, [− 1��]]/a�' − 1, [��a] /b�', [− 1��b]
 /a�', [� = �a��� , −������, ^�_� ⋅ max c/]�' − 1, [− 1��]a/a�' − 1, [��aa
 /b�', [� = �b�−, ^_���� , ^�_��� ⋅ max c/]�' − 1, [− 1��]b/b�', [− 1��bb

Termination:

/M�, + 1, Z + 1� = max N/]�,, Z��]] /a�,, Z + 1��a] /b�, + 1, Z��b]

 /a�, + 1, Z + 1� = max c/]�,, Z��]a /a�,, Z + 1��aa

 /a�, + 1, Z + 1� = max c/]�,, Z��]b /b�, + 1, Z��bb

