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John Hughes 

 

Introduction 
In this lab you will solve Sudoku1 puzzles—but you don’t need to write (another) Sudoku solver. You 
will find one in sudoku.erl. There are a number of problems, of varying difficulty, in problems.txt; 
problems are represented as Erlang data-structures, like this: 
 

{wildcat, 
 [[0,0,0,2,6,0,7,0,1], 
  [6,8,0,0,7,0,0,9,0], 
  [1,9,0,0,0,4,5,0,0], 
  [8,2,0,1,0,0,0,4,0], 
  [0,0,4,6,0,2,9,0,0], 
  [0,5,0,0,0,3,0,2,8], 
  [0,0,9,3,0,0,0,7,4], 
  [0,4,0,0,5,0,0,3,6], 
  [7,0,3,0,1,8,0,0,0]]}. 

 
Each problem is a list of nine lists, each of nine elements, where elements from 1 to 9 represent  
fixed digits in the problem, and zeroes represent spaces where a digit is to be filled in. Calling 
 

sudoku:benchmarks(). 
 
solves each puzzle 100 times, and measures both the time to solve each puzzle (in ms), and the time 
to run all the benchmarks (in µs). 
 
4> sudoku:benchmarks(). 
{80425000, 
 [{wildcat,0.68}, 
  {diabolical,65.18}, 
  {vegard_hanssen,144.55}, 
  {challenge,9.93}, 
  {challenge1,521.99}, 
  {extreme,13.13}, 
  {seventeen,48.79}]} 
 
This is expected to take around a minute. 
 
Your task is to speed up the benchmarks using parallelism. 
 

Running benchmarks in parallel 
The most obvious way to speed up the benchmarks/0 function is to solve the different puzzles in 
parallel. Implement this idea, and measure the speedup you obtain for benchmarks/0. Use 
percept to visualize the parallelism you get, and submit your modified source code, the output of 
the sequential and the parallel benchmark, and a percept graph showing the parallelism you 
                                                             
1 If, by some mischance, you are still unfamiliar with Sudoku, look up the rules in Wikipedia. 



obtain. Compute the speedup you obtain, and report how many cores and what type of machine you 
used. What can you say about the results? 

Note that you should not parallelize the repeat/1 function, which solves each puzzle a large 
number of times. The reason for repeat/1 is just to make your benchmark run a bit longer, so that 
you can make more accurate measurements and get more accurate percept graphs—if you 
parallelize repeat, then you defeat the purpose of the exercise. You may change the number of 
repetitions of each solving (?EXECUTIONS) to suit the machine you are running on: the benchmarks 
should run for long enough that you can measure their time accurately, but not so long that you 
spend a lot of time waiting for them to finish. 

Understanding the solver 
Because the puzzles take a varying length of time to solve, and we cannot tell in advance which 
puzzles will be the slowest to solve, then just running a sequential solver several times in parallel will 
not give the best speedup. Rather, we should make the solver itself parallel. To do so, we must 
understand how it works. 

Puzzle representations 
The problems supplied as input are matrices containing zeroes in the unknown positions, but they 
are converted to ”partial solutions”, by fill/1, in which unknown elements are replaced by a list of 
possible values. Think of this as ”filling in each square with the values that might appear there”. The 
solver itself operates on these partial solutions, gradually removing elements from the lists of 
possible values, until each list has only a single element—at which point the value in the square is 
known, and the puzzle is solved. 
 
Refining partial solutions 
Given a partial solution, one way to refine it is to remove from each set of possible values, all the 
values already known to occur in the same row, the same column, and the same block. If no values 
remain in any square, then the puzzle cannot be solved; if there is exactly one value remaining in a 
set of values, then that must be the value in that square. The function refine/1 applies this idea 
repeatedly to a partial solution, until no more values can be removed from any set by this method. 
This method alone is sufficient to solve easy puzzles such as wildcat: 

8> sudoku:refine(sudoku:fill(Wildcat)). 
[[4,3,5,2,6,9,7,8,1], 
 [6,8,2,5,7,1,4,9,3], 
 [1,9,7,8,3,4,5,6,2], 
 [8,2,6,1,9,5,3,4,7], 
 [3,7,4,6,8,2,9,1,5], 
 [9,5,1,7,4,3,6,2,8], 
 [5,1,9,3,2,6,8,7,4], 
 [2,4,8,9,5,7,1,3,6], 
 [7,6,3,4,1,8,2,5,9]] 
 
Harder problems such as diabolical cannot be completely solved by this method, so the result of 
refine/1 still contains unknown squares.  

10> sudoku:refine(sudoku:fill(Diabolical)).             
[[[1,4,7,9],2,[1,3,4,7],6,[1,3,5,7],8,[1,3,4,9],[4,5],[1,5,9]], 
 [5,8,[1,3,4,6],[1,2],[1,3],9,7,[2,4,6],[1,2]], 
 …] 



 
However, for each element, we know what the range of possible values are. For example, the top left 
element of diabolical must be 1, 4, 7 or 9. 

Guessing 
Once we have drawn all the inferences we can by refinement, we simply pick a square, and guess 
what the value in it might be. We have a list of possible values in the square, so we can just guess 
each one of those in turn, and see if we can solve the resulting puzzle recursively. If we fail to solve 
the puzzle for our first guess, then we try the second guess instead, and so on. If we can’t solve the 
puzzle for any guessed value, then the puzzle as a whole is insoluble.  

Which square should we pick, to guess the value of? Well, since we know how many guesses we will 
have to try for each square, then we can pick one of the squares with the fewest possible guesses, to 
keep the cost of the search as low as possible. The function guess/1 chooses a square in a matrix 
to guess by this method. The function guesses/1 returns a list of resulting matrices, after 
refinement, with the easiest matrix first. (It’s possible, of course, that one guessed value for a square 
leads to much more helpful refinement of other squares than another. It makes sense to try the 
helpful guesses first!). 

Finally, the function solve_refined/1 applies the whole recursive search algorithm to solve a 
puzzle completely, raising an exception if it is not solvable. We assume that the matrix given to 
solve_refined/1 has already been refined, because this is the case in the recursive calls; the 
top-level function solve/1 just refines its argument and then calls solve_refined/1. 

Read the code in sudoku.erl, try it out, and make sure you understand it. 

Parallelizing the solver 
Your goal now is to speed up the solution of one puzzle using parallelism. There are several 
opportunities for parallelism in the solver algorithm above: 

• When refining the rows of a matrix, we could refine all the rows in parallel 
• We could refine the rows, columns, and blocks of a matrix in parallel, and then take the 

intersection of the results 
• We could explore the different possible guess values for the guessed square in parallel 

These are three possibilities: there may well be more. Experiment with these methods, and measure 
the speedups you obtain. Use the sequential version of the benchmark/0 function to measure 
your speedups in this part of the exercise, so that the times you measure are the times to solve one 
puzzle with all your available cores—the only parallelism you use should be inside the solver itself. 

Submit your parallelized code, together with a brief description of the methods you used to 
parallelize it. Include the output of running the parallel benchmarks, together with a description of 
the machine used to run them, and a copy of the output of the sequential benchmark on the same 
machine. Compute the speedup for solving each puzzle, and the geometric mean of all your 
speedups. The best speedup wins bragging rights! 

Enjoy! 
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