
Programming Language Technology

Exam, 11 April 2017 at 8.30–12.30 in SB (Sven Hultins gata 6)

Course codes: Chalmers DAT151, GU DIT231. As re-exam, also DAT150,
DIT229/230, and TIN321.
Exam supervision: Andreas Abel (+46 31 772 1731), visits at 9:30 and 11:30.

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: Tuesday 25 April 2017 at 10-11 in room EDIT 8103.

Please answer the questions in English.

Question 1 (Grammars): Write a labelled BNF grammar that covers the
following constructs of a C-like imperative language: A program is a list of
statements. Types are int and bool. Statement constructs are:
• variable declarations (e.g. int x;), not multiple variables, no initial value
• expression statements (E;)
• while loops
• blocks: (possibly empty) lists of statements enclosed in braces

Expression constructs are:
• identifiers/variables
• integer literals
• pre-increments of identifiers (++x)
• greater-or-equal-than comparisons (E >= E′)
• assignments of identifiers (x = E)

Greater-or-equal is non-associative and binds stronger than assignment. Paren-
theses around and expression are allowed and have the usual meaning. An
example program would be:

int x; x = 0; while (10 >= ++x) {}

You can use the standard BNFC categories Integer and Ident as well as list
short-hands, and terminator, separator, and coercions rules. (10p)

Question 2 (Lexing): A string literal is a character sequence of length ≥ 2
which starts and ends with double quotes ". Taking away both the starting and
the ending ", we obtain a string in which " may only appear in the form "".
Valid string literals are e.g.: "Hi!" or """Ol". Invalid string literals are e.g.:
B" (does not start with double quotes) "A (does not end with double quotes),
or """ (the middle part " is not valid since it is a single ").

1

To simplify matters, we represent character " by a and any other character
by b. The valid string literals from above become abbba and aaabba and the
invalid ones ba, ab, and aaa. Our alphabet thus becomes Σ = {a, b}.

1. Give a regular expression for string literals (using alphabet Σ). Demon-
strate that your regular expression accepts the two valid examples and
rejects the three invalid ones. (5p)

2. Give a deterministic or non-deterministic automaton for recognizing string
literals (using alphabet Σ). Demonstrate that your automaton accepts the
two valid examples and rejects the three invalid ones. (5p)

Question 3 (Parsing): Consider the following BNF-Grammar for boolean
expressions (written in bnfc). The starting non-terminal is D.

Or. D ::= D "|" C ; -- Disjunctions

Conj. D ::= C ;

And. C ::= C "&" A ; -- Conjunctions

Atom. C ::= A ;

TT. A ::= "true" ; -- Atoms

FF. A ::= "false" ;

Var. A ::= "x" ;

Parens. A ::= "(" D ")" ;

Step by step, trace the LR-parsing of the expression

false | x & true

showing how the stack and the input evolves and which actions are performed.
(8p)

Question 4 (Type checking and evaluation):

1. Write syntax-directed type checking rules for the statement forms and lists
of Question 1. The typing environment must be made explicit. You can
assume a type-checking judgement for expressions.

Alternatively, you can write the type-checker in pseudo code or Haskell.

Please pay attention to scoping details; in particular, the program

while (0 >= 0) int x; x = 0;

should not pass your type checker! (5p)

2. Write syntax-directed interpretation rules for the expression forms of Ques-
tion 1. The environment must be made explicit, as well as all possible side
effects.

Alternatively, you maybe write an interpeter in pseudo code or Haskell.
(5p)

2

Question 5 (Compilation):

1. Write compilation schemes in pseudo code for each of the expression con-
structions in Question 1 generating JVM (i.e. Jasmin assembler). It is not
necessary to remember exactly the names of the instructions – only what
arguments they take and how they work. (6p)

2. Give the small-step semantics of the JVM instructions you used in the
compilation schemes in part 1. Write the semantics in the form

i : (P, V, S) −→ (P ′, V ′, S′)

where (P, V, S) are the program counter, variable store, and stack before
execution of instruction i, and (P ′, V ′, S′) are the respective values after
the execution. For adjusting the program counter, you can assume that
each instruction has size 1. (6p)

Question 6 (Functional languages):

1. For lambda-calculus expressions we use the grammar

e ::= n | x | λx→ e | e e

and for simple types t ::= int | t→ t. Non-terminal x ranges over variable
names and n over integer constants 0, 1, etc.

For the following typing judgements Γ ` e : t, decide whether they are
valid or not. Your answer should be just “valid” or “not valid”.

(a) ` λx→ λy → (f x) y : int→ (int→ int).

(b) y : (int→ int)→ int ` y (λx→ 1) : int.

(c) f : int→ int ` λx→ f (f x) : int→ int.

(d) y : int→ int, f : int ` f y : int.

(e) f : (int → int) → (int → int) ` (λx → f (xx)) (λ → f (xx)) : int →
int.

The usual rules for multiple-choice questions apply: For a correct answer
you get 1 point for a wrong answer −1 points. If you choose not to give an
answer for a judgement, you get 0 points for that judgement. Your final
score will be between 0 and 5 points, a negative sum is rounded up to 0.
(5p)

2. Write a call-by-value interpreter for above lambda-calculus either with
inference rules, or in pseudo-code or Haskell. (5p)

Good luck!

3

