
Types for programs and proofs

Take home exam 2016

• Deadline: Friday 21 October at 12.00.

• Answers are submitted in the Fire system.

• Grades: 3 = 24 p, 4 = 36 p, 5 = 48 p. Bonus points from talks and
homework will be added.

• The maximum score of the exam is 60 p, and in addition there are two
optional problems each worth 8 p. You are not expected to solve all the
problems. Choose carefully which ones you spend time on.

• In some of the problems you are asked to write programs and proofs in
Agda. Alternatively, you may use Haskell for the programs, but you can
of course not use it for the proofs. You can then get partial credit for
careful, rigorous, handwritten proofs.

• Note that this is an individual exam. You are not allowed to help each
other. If we discover that you have collaborated, both the helper and
the helped will fail the whole exam. We will also consider disciplinary
measures.

• Please contact Peter or Thierry if there is an ambiguity in a question or
something else is unclear. We will publish any corrections and additions
on the course homepage.

1



1. (a) Define the set of positive natural numbers PosNat = {1, 2, 3, . . .} in
Agda!

(b) Define the arithmetic operations of addition, multiplication, and ex-
ponentiation on these positive natural numbers!

(c) Prove the associativity law for addition for these positive natural
numbers.

(d) Prove the commutativity law of addition for these positive natural
numbers.

(6 p)

2. We know that
2 + 2 = 2× 2 = 22 = 4

for numbers. Similarly, we have that

Bool + Bool ∼= Bool× Bool ∼= Bool→ Bool

where A ∼= B means that there is a bijection between A and B, that is,
that there are f : A→ B and g : B → A which are inverses of each other,
that is, g (f x) = x for all x : A and f (g y) = y for all y : B.

(a) Implement these bijections in Agda!

(b) Define what it means for two functions f, g : Bool→ Bool to be equal!
We here mean that they are ”extensionally” equal, that is, that for
each input they return the same output.

(c) Prove that your functions in (a) are indeed bijections, where equality
on Bool → Bool is extensional equality. (More explicitly: to prove
that there is a bijection between Bool×Bool and Bool→ Bool means
to prove that there are f : Bool × Bool → (Bool → Bool) and g :
(Bool → Bool) → Bool × Bool which are inverses of each other, that
is, g (f x) = x for all x : Bool×Bool and f (g y) is extensionally equal
to y for all y : Bool→ Bool.)

(d) Prove the general law that if A ∼= B and B ∼= C, then A ∼= C in Agda.
Here ”=” means the identity type of Agda, see eg Identity.agda from
the lectures.

(12 p)

3. (a) Define the set of positive binary numbers BinNat with a leading 1.
That is, the set {1, 10, 11, 100, 101, 110, . . .}. Define the bijection
PosNat ∼= BinNat, where PosNat are your numbers from one. (In this
part you only need to define the two functions nat2bin : PosNat →
BinNat and bin2nat : BinNat→ PosNat.) (4 p)

(b) Prove that nat2bin and bin2nat are inverses of each other, that is,
that they form a bijection. (Optional. This is quite a hard problem,
where you need to do some non-trivial equational reasoning. There
is a module in Agda’s standard library which facilitates equational
reasoning by providing some nice syntax.) (8 p)

2



4. System T is defined in ”Dependent types at work” section 2.5 (see the
home page of the course). Like PCF it is based on the simply typed
lambda calculus and has the following constants in common.

True, False, Zero, Succ, if

However, System T does not have a fixed point combinator fix for defin-
ing general recursive functions, but only a primitive recursion combinator
natrec.

Your task is now to write some programs in System T and implement
them in Agda, following ”Dependent types at work”. As these constants
are called true, false, zero, succ and if_then_else_ respectively.

(a) The PCF-constants pred and isZero are not primitive in System T.
Show how they can be defined using natrec!

(b) Define the fibonacci function

fib : Nat -> Nat

in System T using natrec!

(c) Show how to program in System T the function

min : Nat -> Nat -> Nat

such that min m n returns the minimum of m and n

(6 p)

3



5. (a) Define an interface for queues Queueas a record in Agda. We show
the first three lines of this record:

record Queue (A : Set) : Set1 where

field

Q : Set

...

Here Q is the type which implements the queue. Your task is to ex-
tend this record with four operations: emptyQ which builds an empty
queue, insertLast which inserts a new element at the end of the
queue, removeFirst which removes an element from the beginning
the queue, and first which returns the first element of the queue.
Use the Maybe-type so that you can return the exceptional element
“nothing” if you try to remove or return the first element of an empty
queue.

(b) Instantiate your Queue-record in two ways, both based on using lists
as the implementing type Q. In the first one you insert at the begin-
ning of the list and remove from the end. In the second you insert at
the end of the list and remove from the beginning. Implement queues
as lists, and instantiate the operations.

(c) Add some properties to the Queue-record! For example, that the first
element of the queue is the same after having added a new element
at the end of the queue. Can you think of more properties?

(d) Now define a record for ”indexed queues”, that is queues of a given
length. The first three lines of this record are:

record IndexedQueue (A : Set) : Set1 where

field

Q : Nat -> Set

...

Note that the implementing type is now an ”indexed” type. Your
indexed queues should have indexed versions of the same operations
as in (a)

(e) Instantiate your IndexedQueue-record in one way using the type of
vectors instead of the type of lists. In this way you avoid using the
Maybe-type.

(12 p)

4



6. (a) In Ulf Norell’s lecture on the 6 October he implemented a type
checker for the simply typed lambda calculus. Your task is to ex-
tend this type checker so that it can deal with pairs. You will need
to extend Type with a pair type, add a pair constructor and pro-
jections to RawTerm and Term and update the type checker and
evaluator to handle the new constructs.

(10 p)

(b) Optionally you may also extend the parser and pretty printer.

(8 p)

7. In Chapter 12 in Pierce there is a proof of normalization for the simply
typed lambda calculus (theorem 12.1.6). Exercise 12.1.7 Pierce is about
extending this proof to include booleans and products.

Your task here is to extend this proof to a proof of normalization for
System T. That is, you extend the simply typed lambda calculus with
natural numbers and the constants described in problem 4 above.

(10 p)

5


