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Exercise 1 from 12/08

// A : Dynamic Array 
// PQ : Priority Queue, |PQ| = N3 
 for(int i = 0; i < N; i++) 
   A.add(0 , PQ.deleteMin())

Analyze the time complexity

in terms of  N
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Exercise 6.2, 6.3

Draw the heap after each operation

for i in [10,12,1,14,6,5,…] 
PQ.insert(i)1.

PQ = buildHeap([10,12,1,14,6,…])2.

PQ.deleteMin()3.
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Operation
Time 

Complexity

findMin() O(1)

deleteMin() O(log N)

insert(x) O(log N)
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Use as few boxes as possible



int pack (double C, double[] W)

• Use as few boxes as possible 

• Put each weight in the box with most room for it
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int pack (double C, double[] W)

Capacity of boxes Weights of objects

• Use as few boxes as possible 

• Put each weight in the box with most room for it


