
Data Structures
Exercise Session

Marco Vassena

Exercise 2 from12/11

Exercise 2 from12/11

1

2 3

54

Exercise 2 from12/11

1

2 3

54

1

2 3

54

Add to each node a reference to the parent

Exercise 2 from12/11

1

2 3

54

1

2 3

54

Add to each node a reference to the parent

Tree

Tree

Tree

Tree

Tree

Tree

Tree

root

Tree

Tree

root

1

Tree

Node

Tree

root

1

Tree

Node

Tree

root

1left right

Tree

Node

Tree

root

1

2

left right

null

Tree

Node

Tree

root

1

2

left right

null

Tree

PNode

PTree

1

2

Parent Tree

PNode

PTree

1

2

Parent Tree

PNode

PTree

1

2

Parent Tree

parent

PNode

PTree

1

2

Parent Tree

parent

Exercise 1 from 12/08

// A : Dynamic Array
// PQ : Priority Queue, |PQ| = N3
 for(int i = 0; i < N; i++)
 A.add(0 , PQ.deleteMin())

Analyze the time complexity

in terms of N

Heap Recap

9

5 4

31

Heap Recap

9

5 4

31

Order Property

Heap Recap

9

5 4

31

Order Property

<

< <

<

Heap Recap

9

5 4

31

Structure PropertyOrder Property

<

< <

<

Heap Recap

9

5 4

31

Complete
Binary Tree

Except Last
Level

Structure PropertyOrder Property

<

< <

<

Exercise 6.2, 6.3

Draw the heap after each operation

Exercise 6.2, 6.3

Draw the heap after each operation

for i in [10,12,1,14,6,5,…]
PQ.insert(i)1.

Exercise 6.2, 6.3

Draw the heap after each operation

for i in [10,12,1,14,6,5,…]
PQ.insert(i)1.

PQ = buildHeap([10,12,1,14,6,…])2.

Exercise 6.2, 6.3

Draw the heap after each operation

for i in [10,12,1,14,6,5,…]
PQ.insert(i)1.

PQ = buildHeap([10,12,1,14,6,…])2.

PQ.deleteMin()3.

Heap Recap

9

5 4

31

Operation
Time

Complexity

findMin() O(1)

deleteMin() O(log N)

insert(x) O(log N)

Exercise 6.2, 6.3

Exercise 6.2, 6.3

MAX
C

Exercise 6.2, 6.3

MAX
C

Exercise 6.2, 6.3

MAX
C

Use as few boxes as possible

int pack (double C, double[] W)

• Use as few boxes as possible

• Put each weight in the box with most room for it

int pack (double C, double[] W)

Capacity of boxes

• Use as few boxes as possible

• Put each weight in the box with most room for it

int pack (double C, double[] W)

Capacity of boxes Weights of objects

• Use as few boxes as possible

• Put each weight in the box with most room for it

