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Exercise 1 from 12/08

Analyze the time complexity

K// A : Dynamic Array h
// PQ : Priority Queue, |PQ| = N3
for(int 1 = 0; i < N; i++)

A.add(@ , PQ.deleteMin())
\_ J

in terms of N
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Exercise 6.2, 6.3

Draw the heap after each operation
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for i in [10,12,1,14,6,5,..]
PQ.insert (i)
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Exercise 6.2, 6.3

Draw the heap after each operation

~

for i in [10,12,1,14,6,5,..]
PQ.insert (i)

PQ = buildHeap(I[10,12,1,14,6,..])

PQ.deleteMin()




Heap Recap

Operation Time

@ Complexity
/ \ findMin() O(1)
& @

/ \ deleteMin()| Oflog N)

O ®

insert(x) | Oflog N)
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[int pack (double C, doublel]l W))

* Use as few boxes as possible

* Put each weight in the box with most room for it
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* Use as few boxes as possible

* Put each weight in the box with most room for it



