N

-

Data Structures

Exercise Session

O

o020
-

Qb Marco Vassena fb

Exercise 2 from12/11

Exercise 2 from12/11

(D
@/ \@

7N
OO

Exercise 2 from12/11

/ ®\

2 ®
I /\g

< Add to each node a reference to the par

Exercise 2 from12/11

o o
/@< ® o /< u
& @ o g

< Add to each node a reference to the parent >

Tree

Tree

R)T ree
Y

Tree

R)T ree
Y

Tree

f R)T ree
root&

Tree

R)T ree
Y

_
root&

Tree

R /lTree
Y

_
root&

/[Node

Tree

R)T ree
Y

_
root&

|)Node
left @ right
VN

Tree

R /lTree
_ Y
root&
/[Node
v

right

leftL/CD\%

olNel

Parent Tree

S)PTree
y.

_
)PNode
v

/®\

Parent Tree

S)PTree
y.

_
)PNode
v

TN
olRe

/N
O O

Parent Tree

aaaaa

Parent Tree

aaaaa

Exercise 1 from 12/08

Analyze the time complexity

K// A : Dynamic Array h
// PQ : Priority Queue, |PQ| = N3
for(int 1 = 0; i < N; i++)

A.add(@ , PQ.deleteMin())
_ J

in terms of N

Heap Recap

9
@/ \@

Heap Recap

[Order Property]

9
@/ \@

© ®

Heap Recap

[Order Property]

9
< / \<
7@\< @
© ®

Heap Recap

[Order Property]

O

(8)

7N

9

G

©

[Structure Property]

@

Heap Recap

[Order Property] [Structure Property]

</@\< Complete

Binary Tree
0
@ @ Excfe?,telfaﬁ

Exercise 6.2, 6.3

Draw the heap after each operation

Exercise 6.2, 6.3

Draw the heap after each operation

~

for i in [10,12,1,14,6,5,..]
PQ.insert (i)

Exercise 6.2, 6.3

Draw the heap after each operation

~

for i in [10,12,1,14,6,5,..]
PQ.insert (i)

PQ = buildHeap(I[10,12,1,14,6,..])

Exercise 6.2, 6.3

Draw the heap after each operation

~

for i in [10,12,1,14,6,5,..]
PQ.insert (i)

PQ = buildHeap(I[10,12,1,14,6,..])

PQ.deleteMin()

Heap Recap

Operation Time

@ Complexity
/ \ findMin() O(1)
& @

/ \ deleteMin()| Oflog N)

O ®

insert(x) | Oflog N)

Exercise 6.2, 6.3

Exercise 6.2, 6.3

Exercise 6.2, 6.3

Exercise 6.2, 6.3

&

Use as few boxes as possibl

NV Y

.

P AN ,
s e

7 \ f o \

[int pack (double C, doublel]l W))

* Use as few boxes as possible

* Put each weight in the box with most room for it

Capacity of boxes

V
[int pack (double C, doublel]l W))

* Use as few boxes as possible

* Put each weight in the box with most room for it

Capacity of boxes Weights of objects

V V
[int pack (double C, doublel]l W))

* Use as few boxes as possible

* Put each weight in the box with most room for it

