
Data Structures
Exercise Session

Marco Vassena

Exercise 1 from 12/08

Analyze the time complexity

in terms of M , N and |stack|

for(int r = 0; r < M; r++)
 for(int c = 0; c < N; c++) 

 stack.push(c);

Exercise 3 from 12/04

1 2 3 4 5.append ()

Exercise 3 from 12/04

1 2 3 4 5.append ()

=

1 2 3 4 5

Exercise 3 from 12/04

Implement append in O(1)

1 2 3 4 5.append ()

=

1 2 3 4 5

Linked List

Linked List
List

Linked List
Listhead

1

Linked List

ListNode

Listhead

1

Linked List

ListNode

next

Listhead

1 2 3

Linked List

ListNode

next

Listhead

1 2 3

Linked List

ListNode null

next

Listhead

1 2 3

4 5

.append ()

1 2 3

4 5

.append ()

1 2 3

4 5

O(N) .append ()

1 2 3

4 5

O(N) .append ()

1 2 3

Linked List with pointer to last

1 2 3

Linked List with pointer to last

1 2 3

Linked List with pointer to last

tail

1 2 3

4 5

.append ()

1 2 3

4 5

.append ()

1 2 3

4 5

.append ()

1 2 3

4 5

.append ()O(1)

1 2 3

4 5

.append ()O(1)

Exercise 3.25a

Stack:

Exercise 3.25a

Stack:

push(x)

Exercise 3.25a

Stack:

push(x) O(1)

Exercise 3.25a

Stack:

push(x) O(1)

Exercise 3.25a

Stack:

push(x)

pop()

O(1)

Exercise 3.25a

Stack:

push(x)

pop()

O(1)

O(1)

Exercise 3.25a

Stack:

push(x)

pop()

O(1)

O(1)

Exercise 3.25a

Stack:

push(x)

pop()

findMin()

O(1)

O(1)

Exercise 3.25a

Stack:

push(x)

pop()

findMin()

O(1)

O(1)

O(1)

Exercise 3.25a

Stack:

push(x)

pop()

findMin()

O(1)

O(1)

O(1)

Exercise 3.29

Print a singly linked list in reverse in constant space:

Exercise 3.29

Print a singly linked list in reverse in constant space:

1 2 3 .printRev () // O(1) memory

Exercise 3.29

Print a singly linked list in reverse in constant space:

1 2 3 .printRev () // O(1) memory

3

2

1

xs

here prev next

xs

here prev next

Init

xs

here prev next

Init

here = xs.head
prev = null

xs

here prev next

Init

here = xs.head
prev = null

xs

here prev next

Init

here = xs.head
prev = null

xs

here prev next

Init

Rev Loop

here = xs.head
prev = null

xs

here prev next

Init

while (here ≠ null) do
 next = here.next
here.next = prev
prev = here

 here = next

Rev Loop

here = xs.head
prev = null

xs

here prev next

Init

while (here ≠ null) do
 next = here.next
here.next = prev
prev = here

 here = next

Conc

Rev Loop

here = xs.head
prev = null

xs

here prev next

Init

while (here ≠ null) do
 next = here.next
here.next = prev
prev = here

 here = next

Conc

xs.head = prev

Rev Loop

here = xs.head
prev = null

xs.head = prev

1xs

here prev next

Init

while (here ≠ null) do
 next = here.next
here.next = prev
prev = here

 here = next

Conc

Rev Loop

here = xs.head
prev = null

xs.head = prev

1xs

here prev next

Init

while (here ≠ null) do
 next = here.next
here.next = prev
prev = here

 here = next

Conc

Rev Loop

here = xs.head
prev = null

xs.head = prev

1xs

here prev next

Init

while (here ≠ null) do
 next = here.next
here.next = prev
prev = here

 here = next

Conc

Rev Loop

here = xs.head
prev = null

xs.head = prev

1xs

here prev next

Init

while (here ≠ null) do
 next = here.next
here.next = prev
prev = here

 here = next

Conc

Rev Loop

here = xs.head
prev = null

xs.head = prev

1xs

here prev next

Init

while (here ≠ null) do
 next = here.next
here.next = prev
prev = here

 here = next

Conc

Rev Loop

here = xs.head
prev = null

xs.head = prev

1xs

here prev next

Init

while (here ≠ null) do
 next = here.next
here.next = prev
prev = here

 here = next

Conc

Rev Loop

here = xs.head
prev = null

xs.head = prev

1xs

here prev next

Init

while (here ≠ null) do
 next = here.next
here.next = prev
prev = here

 here = next

Conc

Rev Loop

here = xs.head
prev = null

Exercise 5 from13/04

Dynamic Array:

• ins(x) // Insert in first empty position

• del() // Removes the last element

Operations Dynamic Array

Operations Dynamic Array

new()

Operations Dynamic Array

new()

ins(1) 1

Operations Dynamic Array

new()

ins(1) 1

ins(2)

Operations Dynamic Array

new()

ins(1) 1

ins(2)

Double the size if full

Operations Dynamic Array

new()

ins(1) 1

ins(2) 1

Double the size if full
Copy

Operations Dynamic Array

new()

ins(1) 1

ins(2) 1 2

Double the size if full
Copy

Operations Dynamic Array

new()

ins(1) 1

ins(2) 1 2

Double the size if full
Copy

del() 1

Operations Dynamic Array

new()

ins(1) 1

ins(2) 1 2

Double the size if full
Copy

del() 1

Resize if half-empty

Operations Dynamic Array

new()

ins(1) 1

ins(2) 1 2

Double the size if full
Copy

del() 1

Resize if half-empty

1

Exercise 5 from13/04

SN : Sequence of N operations

T(SN) = Ω(N2)

For every N exists

such that

