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Exercise 1 from 12/08

Analyze the time complexity

in terms of  M , N and |stack| 

for(int r = 0; r < M; r++) 
 for(int c = 0; c < N; c++) 

    stack.push(c);
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Implement append in O(1)
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Exercise 5 from13/04

Dynamic Array:

• ins(x)     // Insert in first empty position  

• del()      // Removes the last element 
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Exercise 5 from13/04

SN : Sequence of N operations

T(SN) = Ω(N2)

For every N exists

such that


