
Databases for a New
Age

Parallel Functional Programming
John Hughes

New Demands on Databases

• Very high throughput
• Requires large clusters to process all the operations

• Low and predictable latency
• Good customer experience for (almost) all customers
• Not average latency, but 99,9th percentile

• Always available
• Think Amazon, Twitter, Facebook
• Failed operations==lost business

”The Network is Reliable” (aphyr.com)

• ”During a planned network reconfiguration to
improve reliability, Fog Creek suddenly lost access
to their network. A network loop had formed…it
resulted in two hours of total service unavailability.”

• ”Mystery RabbitMQ partitions…upping the
partition detection timeout to 2 minutes reduced
the frequency of partitions, but didn’t prevent
them altogether.”

”The Network is Reliable” (aphyr.com)

• ”DRBD split-brain…both nodes can remain online
and accept writes…the only realistic option is to
discard all writes not made to a selected
component.”

• ”Github…a 90 second network partition caused file
servers to send ”Shoot the other node in the head”
messages to each other…when the network
recovered, both nodes shot each other at the same
time…recovering took five hours.”

”The Network is Reliable” (aphyr.com)

• ”MongoDB…partition caused two hours of write
loss…network events causing failover on EC2 are
common…simultaneous primaries accepting writes
for multiple days are not unknown.”

Network Partitions in a Database
Cluster

Write 1
Write 2

Read 2 Read 2

Network Partitions in a Database
Cluster

Write 1
Write 2

Read 1 Read 2

x
The wrong answer!

The only alternative is
to block
 not available

C onsistency

A vailability

P artition-tolerance
theorem

Pick
two!

Conjecture: Eric Brewer, 2000
Proof: Gilbert and Lynch, 2002

C onsistency

A vailability

P artition-tolerance
theorem

Pick
two!

Conjecture: Eric Brewer, 2000
Proof: Gilbert and Lynch, 2002

Luckily…

• For many applications, consistency is not essential
• E.g. Facebook posts

• ”Eventual” consistency is good enough
• Eventually we get the right answer
• Mechanisms to discover and tolerate inconsistencies

• Often, simple queries are all that is needed
• Primary key only, no relational joins

Amazon Dynamo (2007)

More than 2,600
citations

Many, many systems
follow this design

What has this to do with Erlang?

• Erlang excels at scalable services (e.g. WhatsApp),
which often need a scalable database

• Erlang is good at implementing a scalable
distributed database

• CouchDB, Couchbase, Riak, Scalaris, Dynomite…

• Basho’s Riak is one of the big noSQL databases
• (Rovio, Danish medical card, UK National Health Service)

API

• Dynamo is a Distributed Key-Value Store

get :: Key -> Value
put :: (Key, Value) -> ok
get :: Key -> {Value,Context}
put :: (Key, Context, Value) -> ok
get :: Key -> RiakObject
put :: RiakObject -> ok

RiakObject

Key
Context
Value

Riak splits a key into a key and
a bucket (like a table name)

Cluster

• Dynamo is designed for clusters of up to a few
hundred machines

• Each machine handles a share of the load
• Stores a part of the data (in a local back-end, such as

Google LevelDB)

• Data is replicated N times for durability/availability
• At Amazon, replicas are in different data-centres

Consistent hashing
02128-1

2127

hash(Key)
vnode

• Hash determines vnode
• Vnode determines physical

node
• Any node can determine

where a key is stored

replicas

What if a node is unavailable?
02128-1

2127

hash(Key)
vnode

x

x

xx

x

x

x x

replicas

• Every key has a ”preference
list” of vnodes

• We use the first N

Latency

• Put: send writes to N nodes
• And wait for N acknowledgements before

acknowledging the user

• Read: send read requests to N nodes
• And wait for N replies before replying to the user

What if a node doesn’t
reply?

Mark it unavailable, use the
next from the preference list.

Latency

• Put: send writes to N nodes
• And wait for N acknowledgements before

acknowledging the user

• Read: send read requests to N nodes
• And wait for N replies before replying to the user

Why not reply to a
read when we get the

first reply?
It might be a stale value!

Latency

• Put: send writes to N nodes
• And wait for N acknowledgements before

acknowledging the user

• Read: send read requests to N nodes
• And wait for N replies before replying to the user

Why not reply to a
read when we get the

first R replies?Then we can tune latency vs
consistency!

Latency

• Put: send writes to N nodes
• And wait for N acknowledgements before

acknowledging the user

• Read: send read requests to N nodes
• And wait for R replies before replying to the user

Why not acknowledge
a write after one

reply?Because that node might
crash and the other writes
might fail! We’d lose data.

Latency

• Put: send writes to N nodes
• And wait for N acknowledgements before

acknowledging the user

• Read: send read requests to N nodes
• And wait for R replies before replying to the user

Why not acknowledge
a write after W

replies?Then we can tune latency
against durability!

Latency

• Put: send writes to N nodes
• And wait for W acknowledgements before

acknowledging the user

• Read: send read requests to N nodes
• And wait for R replies before replying to the user

R + W > N guarantees a quorum—each read
sees the latest write

In practice, a
”sloppy quorum”,
because we use

the first N
available nodes

2 + 2 > 3

Handoff

• What happens if data is written to the wrong node,
and then the correct node comes back up?

• We know where the data should be stored—we record
that on the replacement node.

• When the correct node recovers, the replacement node
”hands off” the data to the correct one.

• But until handoff is complete, stale data may be read.

Read repair

• What happens if we get a key, and one of the
replicas returns stale data?

• We can update that replica with fresh data from another
replica… ”read repair”.

• This is why the node co-ordinating a get request waits
for all N replies, even if only R are needed to respond to
the client.

Recognising stale data

• How do we know when data is out-of-date?
• Time stamps are not reliable!

• Remember that ”context” information…?
• It’s version information… a vector clock.

Versioning

get 0

put 1

version

get 0

put 2

Versioning

get {1,2}

put 3

Application
specific
conflict

resolution

Example
Amazon shopping
basket

Vector Clocks

X Y Z

Client
1

Client
2

[{X,1}]

[{X,2}]

[{X,2},{Y,1}] [{X,2},{Z,1}]

[{X,2},{Y,1},{Z,1}]

[{X,2},{Y,2},{Z,1}]

Vector Clocks

• Consist of a list of node ids and counts

• c1 descends from c2 if:
n Nodes. count(n,c1) >= count(n,c2)

• A value v1 supercedes v2 if its vector clock
descends from the clock of v2.

How often do conflicts arise?

Number of versions %ge of read requests
1 99,94
2 0,00057
3 0,00047
4 0,00009

Conflict resolution is only needed occasionally
Source: Amazon

Deletion

• How do we delete a key?

• We don’t! Write a ”tombstone” over it…

• This means dead keys can come back to life as a result of
conflicts…

How do nodes know the ring?

• Joining and leaving the ring is done explicitly

• Nodes ”gossip” the ring to each other
• Periodically send the ring to random other nodes
• All nodes quickly become aware of changes

• Basho is working on optimizations to this

How do nodes join or leave?

• A new node takes over its share of vnodes from
other nodes

• For balanced load, it should take roughly the same
number of vnodes from each other node

• Requires many more vnodes than nodes!

• Adding a node can take a day…

How well does it work?

Riak

• Riak Core
• Distribution framework: vnodes, consistent hashing, the

ring, vector clocks, etc
• Riak KV

• The key-value store
• Riak Map-Reduce

• For aggregating data
• Riak Pipe

• A generalisation of map-reduce
• …

Borrowing from Sean Cribbs…

This Thursday

• Guest lecture: Russell Brown from Basho in the UK

• CRDTs: Convergent Replicated Datatypes
(a recent Riak extension for higher performance)

• What are they?
• Equivalents in Haskell
• Turning research into a product
• QuickCheck’s rôle in all of this

	Databases for a New Age
	New Demands on Databases
	”The Network is Reliable” (aphyr.com)
	”The Network is Reliable” (aphyr.com)
	”The Network is Reliable” (aphyr.com)
	Network Partitions in a Database Cluster
	Network Partitions in a Database Cluster
	Bildnummer 8
	Bildnummer 9
	Luckily…
	Amazon Dynamo (2007)
	What has this to do with Erlang?
	API
	Cluster
	Consistent hashing
	What if a node is unavailable?
	Latency
	Latency
	Latency
	Latency
	Latency
	Latency
	Handoff
	Read repair
	Recognising stale data
	Versioning
	Versioning
	Vector Clocks
	Vector Clocks
	How often do conflicts arise?
	Deletion
	How do nodes know the ring?
	How do nodes join or leave?
	How well does it work?
	Riak
	Borrowing from Sean Cribbs…
	Bildnummer 37
	Bildnummer 38
	Bildnummer 39
	Bildnummer 40
	This Thursday
	Bildnummer 42

