Finite Automata Theory and Formal Languages TMV027/DIT321– LP4 2015

Lecture 6 Ana Bove

April 20th 2015

Overview of today's lecture:

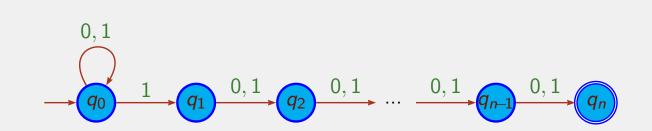
- More on NFA;
- NFA with ϵ -Transitions;
- Equivalence between DFA and ϵ -NFA;

Recap: Non-deterministic Finite Automata

- Defined by a 5-tuple $(Q, \Sigma, \delta, q_0, F)$;
- Why "non-deterministic"?;
- $\delta: Q \times \Sigma \rightarrow \mathcal{P}ow(Q);$
- Easier to define for some problems;
- Accept set of words x such that $\hat{\delta}(q_0, x) \cap F \neq \emptyset$;
- Given a NFA N we can apply the subset construction and get a DFA
 D ...
- ... such that $\mathcal{L}(N) = \mathcal{L}(D)$;
- Hence, also accept the so called regular language.

A Bad Case for the Subset Construction

Proposition: Any DFA recognising the same language as the NFA below has at least 2ⁿ states:



This NFA recognises strings over $\{0,1\}$ such that the *n*th symbol from the end is a 1.

Proof: Let $\mathcal{L}_n = \{x \mid x \in \Sigma^*, u \in \Sigma^{n-1}\}$ and $D = (Q, \Sigma, \delta, q_0, F)$ a DFA.

We want to show that if $|Q| < 2^n$ then $\mathcal{L}(D) \neq \mathcal{L}_n$.

April 20th 2015, Lecture

A Bad Case for the Subset Construction (Cont.)

Lemma: If $\Sigma = \{0,1\}$ and $|Q| < 2^n$ then there exists $x, y \in \Sigma^*$ and $u, v \in \Sigma^{n-1}$ such that $\hat{\delta}(q_0, x0u) = \hat{\delta}(q_0, y1v)$.

Proof: Let us define a function $h : \Sigma^n \to Q$ such that $h(z) = \hat{\delta}(q_0, z)$. *h* cannot be *injective* because $|Q| < 2^n = |\Sigma^n|$.

Hence, we have $a_1 \ldots a_n \neq b_1 \ldots b_n$ such that

$$h(a_1 \ldots a_n) = \hat{\delta}(q_0, a_1 \ldots a_n) = \hat{\delta}(q_0, b_1 \ldots b_n) = h(b_1 \ldots b_n)$$

Let us assume that $a_i = 0$ and $b_i = 1$. Let $x = a_1 \dots a_{i-1}$, $y = b_1 \dots b_{i-1}$, $u = a_{i+1} \dots a_n 0^{i-1}$, $v = b_{i+1} \dots b_n 0^{i-1}$. Hence (recall that for a DFA, $\hat{\delta}(q, zw) = \hat{\delta}(\hat{\delta}(q, z), w)$): $\hat{\delta}(q_0, x 0u) = \hat{\delta}(q_0, a_1 \dots a_n 0^{i-1}) = \hat{\delta}(\hat{\delta}(q_0, a_1 \dots a_n), 0^{i-1}) = \hat{\delta}(\hat{\delta}(q_0, b_1 \dots b_n), 0^{i-1}) = \hat{\delta}(q_0, b_1 \dots b_n 0^{i-1}) = \hat{\delta}(q_0, y 1v)$

TMV027/DIT32

A Bad Case for the Subset Construction (Cont.)

Lemma: If $|Q| < 2^n$ then $\mathcal{L}(D) \neq \mathcal{L}_n$.

Proof: Assume $\mathcal{L}(D) = \mathcal{L}_n$.

Let $x, y \in \Sigma^*$ and $u, v \in \Sigma^{n-1}$ as in previous lemma.

Then, $y1v \in \mathcal{L}(D)$ but $x0u \notin \mathcal{L}(D)$,

That is, $\hat{\delta}(q_0, y 1 v) \in F$ but $\hat{\delta}(q_0, x 0 u) \notin F$.

However, this contradicts the previous lemma that says that $\hat{\delta}(q_0, x 0 u) = \hat{\delta}(q_0, y 1 v)$.

April 20th 2015, Lecture 6

TMV027/DIT32

4/20

Product Construction for NFA

Definition: Given 2 NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ over the same alphabet Σ , we define the product $N_1 \times N_2 = (Q, \Sigma, \delta, q_0, F)$ as follows:

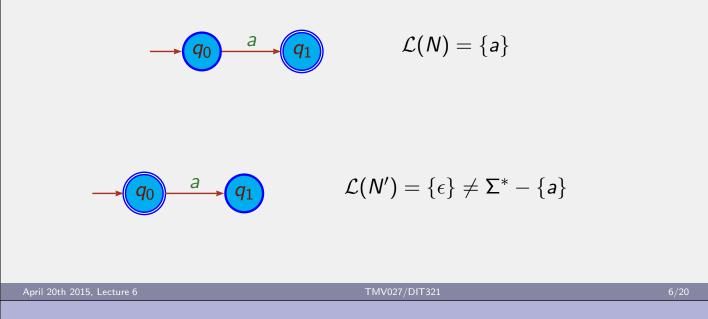
Lemma: $(t_1, t_2) \in \hat{\delta}((p_1, p_2), x)$ iff $t_1 \in \hat{\delta}_1(p_1, x)$ and $t_2 \in \hat{\delta}_2(p_2, x)$. **Proof:** By induction on x.

Proposition: $\mathcal{L}(N_1 \times N_2) = \mathcal{L}(N_1) \cap \mathcal{L}(N_2)$.

Complement for NFA

OBS: Given NFA $N = (Q, \Sigma, \delta, q, F)$ and $N' = (Q, \Sigma, \delta, q, Q - F)$ we do *not* have in general that $\mathcal{L}(N') = \Sigma^* - \mathcal{L}(N)$.

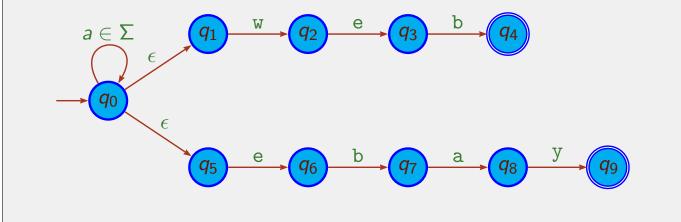
Example: Let $\Sigma = \{a\}$ and N and N' as follows:

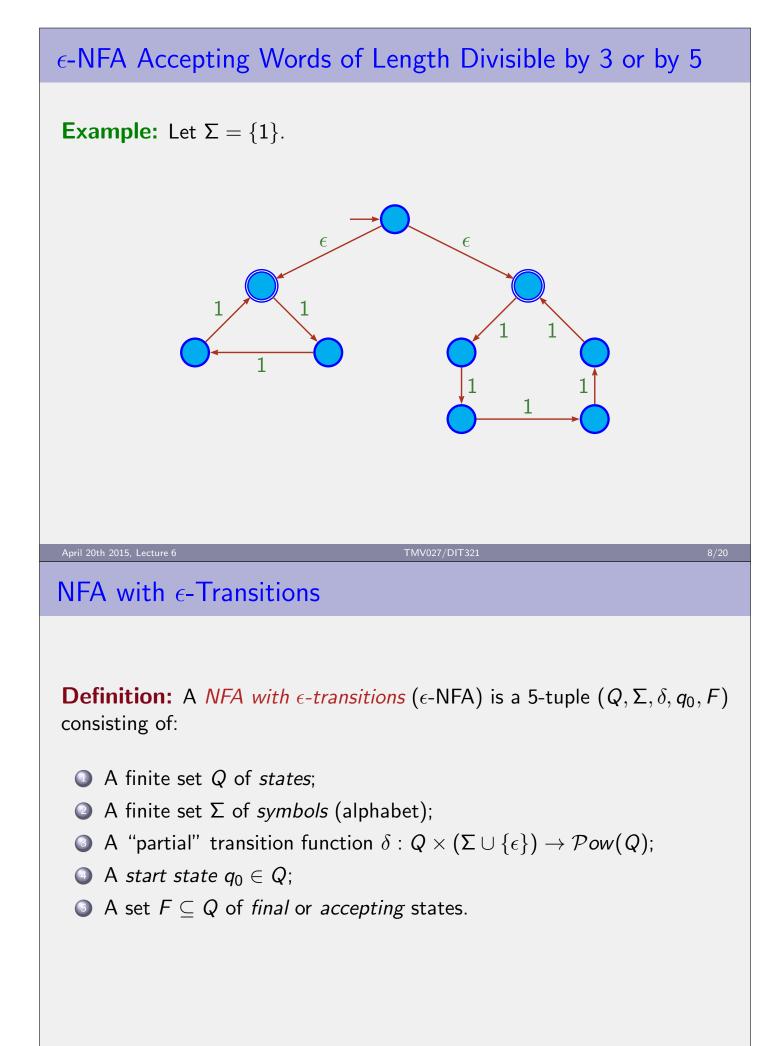


NFA with ϵ -Transitions

Another useful extension of automata that does not add more power is the possibility to allow ϵ -transitions, that is, transitions from one state to another *without* reading any input symbol.

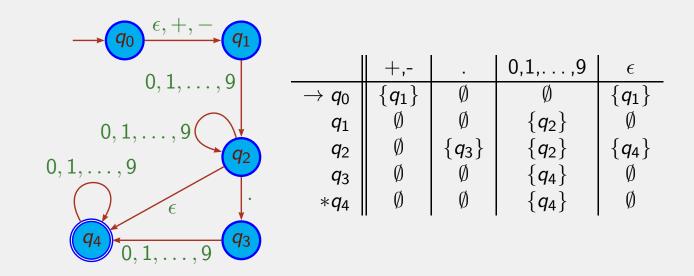
Example: The following ϵ -NFA searches for the keyword web and ebay:





$\epsilon\text{-NFA}$ Accepting Decimal Numbers

Exercise: Define a NFA accepting number with an optional +/- symbol and an optional decimal part.



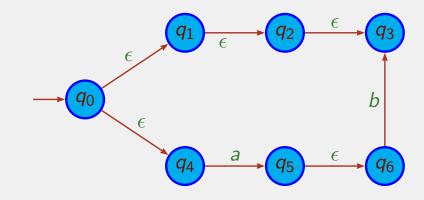
The uses of ϵ -transitions represent the *optional* symbol +/- and the *optional* decimal part.

April 20th 2015, Lecture 6

ϵ -Closures

Informally, the ϵ -closure of a state q is the set of states we can reach by doing nothing or by only following paths labelled with ϵ .

Example: For the automaton



the ϵ -closure of q_0 is $\{q_0, q_1, q_2, q_3, q_4\}$.

ϵ -Closures

Definition: Formally, we define the ϵ -closure of a set of states as follows:

- If $q \in S$ then $q \in \text{ECLOSE}(S)$;
- If $q \in \mathsf{ECLOSE}(S)$ and $p \in \delta(q, \epsilon)$ then $p \in \mathsf{ECLOSE}(S)$.

Note: Alternative formulation

$$\frac{q \in S}{q \in \mathsf{ECLOSE}(S)} \qquad \qquad \frac{q \in \mathsf{ECLOSE}(S) \qquad p \in \delta(q, \epsilon)}{p \in \mathsf{ECLOSE}(S)}$$

Definition: We say that S is ϵ -closed iff S = ECLOSE(S).

April 20th 2015, Lecture 6

TMV027/DIT321

Remarks: *c*-Closures

 Intuitively, p ∈ ECLOSE(S) iff there exists q ∈ S and a sequence of *ϵ*-transitions such that

- The ϵ -closure of a single state q can be computed as ECLOSE($\{q\}$);
- ECLOSE(\emptyset) = \emptyset ;
- S is ϵ -closed iff $q \in S$ and $p \in \delta(q, \epsilon)$ implies $p \in S$;
- We can prove that ECLOSE(S) is the smallest subset of Q containing S which is ε-closed.

Exercise: Implement the ϵ -closure!

Extending the Transition Function to Strings

Definition: Given an ϵ -NFA $E = (Q, \Sigma, \delta, q_0, F)$ we define

$$\begin{split} \hat{\delta} : Q \times \Sigma^* &\to \mathcal{P}ow(Q) \\ \hat{\delta}(q, \epsilon) &= \mathsf{ECLOSE}(\{q\}) \\ \hat{\delta}(q, ax) &= \bigcup_{p \in \Delta(\mathsf{ECLOSE}(\{q\}), a)} \hat{\delta}(p, x) \\ & \text{where } \Delta(S, a) = \cup_{p \in S} \delta(p, a) \end{split}$$

Remark: By definition, $\hat{\delta}(q, a) = \text{ECLOSE}(\Delta(\text{ECLOSE}(\{q\}), a)).$

Remark: We can prove by induction on x that all sets $\hat{\delta}(q, x)$ are ϵ -closed.

This result uses that the union of ϵ -closed sets is also a ϵ -closed set.

April 20th 2015, Lecture 6

Language Accepted by a ϵ -NFA

Definition: The *language* accepted by the ϵ -NFA $(Q, \Sigma, \delta, q_0, F)$ is the set $\mathcal{L} = \{x \in \Sigma^* \mid \hat{\delta}(q_0, x) \cap F \neq \emptyset\}.$

TMV027/DIT32

Example: Let $\Sigma = \{b\}$. $q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{\epsilon} q_2$ $b \xrightarrow{\epsilon} b \xrightarrow{\epsilon} b$ $q_3 \xrightarrow{q_4} q_5$

The automaton accepts the language $\{b, bb, bbb\}$.

Note: Yet again, we could write a program that simulates a ϵ -NFA and let the program tell us whether a certain string is accepted or not.

Exercise: Do it! April 20th 2015, Lecture 6 TMV027/DIT321 15/

Eliminating ϵ -Transitions

Definition: Given an ϵ -NFA $E = (Q_E, \Sigma, \delta_E, q_E, F_E)$ we define a DFA $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$ as follows:

•
$$Q_D = \{ \mathsf{ECLOSE}(S) \mid S \in \mathcal{P}ow(Q_E) \};$$

•
$$\delta_D(S, a) = \mathsf{ECLOSE}(\Delta(S, a))$$
 with $\Delta(S, a) = \cup_{p \in S} \delta(p, a)$;

• $q_D = \mathsf{ECLOSE}(\{q_E\});$

•
$$F_D = \{ S \in Q_D \mid S \cap F_E \neq \emptyset \}.$$

Note: This construction is similar to the subset construction but now we need to ϵ -close after each step.

TMV027/DIT321

Exercise: Implement this construction!

April 20th 2015, Lecture 6

Eliminating ϵ -Transitions

Let *E* be an ϵ -NFA and *D* the corresponding DFA after eliminating ϵ -transitions.

Lemma: $\forall x \in \Sigma^*$. $\hat{\delta}_E(q_E, x) = \hat{\delta}_D(q_D, x)$.

Proof: By induction on *x*.

Proposition: $\mathcal{L}(E) = \mathcal{L}(D)$.

Proof: $x \in \mathcal{L}(E)$ iff $\hat{\delta}_E(q_E, x) \cap F_E \neq \emptyset$ iff $\hat{\delta}_E(q_E, x) \in F_D$ iff (by previous lemma) $\hat{\delta}_D(q_D, x) \in F_D$ iff $x \in \mathcal{L}(D)$.

16/20

Example: Eliminating *e*-Transitions

Let us eliminate the ϵ -transitions in ϵ -NFA that recognises numbers in slide 10.

Finite Automata and Regular Languages

We have shown that DFA, NFA and ϵ -NFA are equivalent in the sense that we can transform one to the other.

Hence, a language is *regular* iff there exists a finite automaton (DFA, NFA or ϵ -NFA) that accepts the language.

Overview of Next Lecture (in HB3)

Sections 3.1, 3.4, 3.2.2:

- Regular expresssions.
- Algebraic laws for regular expressions;
- Equivalence between FA and RE: from FA to RE.