
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2015

Lecture 5
Ana Bove

April 2nd 2015

Overview of today’s lecture:

NFA: Non-deterministic finite automata;

Equivalence between DFA and NFA.

Recap: Deterministic Finite Automata

Defined by a 5-tuple (Q,Σ, δ, q0,F);
Better represented by transition diagrams or tables;

Why “finite”?;

Why “deterministic”?;

total δ : Q × Σ → Q;

Useful to model simple problems;

Only accesible part is of interest;

Accept set of words x such that δ̂(q0, x) ∈ F ;

Accept the so called regular language;

We can defined the products × and ⊕, and the complement...

... accepting the intersection, union and complement of the
languages;

Hence, regular languages are closed under intersection, union and
complement.

April 2nd 2015, Lecture 5 TMV027/DIT321 1/22

Non-deterministic Finite Automata

Given a state and the next symbol, a non-deterministic finite automaton
(NFA) can “move” to many states.

q0

q1

q2

5 kr

5 kr

choc

coffee

Intuitively, the vending machine can choose between different states.

Note: We will not need a dead state here.

April 2nd 2015, Lecture 5 TMV027/DIT321 2/22

When Does a NFA Accepts a Word?

Intuitively: the automaton can guess a successful computation if there is
one.

Formally: iff there is at least one path from the start state to an accepting
state while reading the word.

Example:

NFA accepting words that end in 11 q0 q1 q2

0, 1

1 1

What are all possible computations for the string 1011?
Will 1011 be accepted by the NFA?
And 110?
April 2nd 2015, Lecture 5 TMV027/DIT321 3/22

NFA Accepting Words of Length Divisible by 3 or by 5

Let Σ = {1}.

1 1

1 1

1

1 1

1
1

1

What would be the equivalent DFA?

April 2nd 2015, Lecture 5 TMV027/DIT321 4/22

Non-deterministic Finite Automata

Definition: A non-deterministic finite automaton (NFA) is a 5-tuple
(Q,Σ, δ, q0,F) consisting of:

1 A finite set Q of states;

2 A finite set Σ of symbols (alphabet);

3 A “partial” transition function δ : Q × Σ → Pow(Q);

4 A start state q0 ∈ Q;

5 A set F ⊆ Q of final or accepting states.

April 2nd 2015, Lecture 5 TMV027/DIT321 5/22

Example: NFA

Let us define an automaton accepting only the words such that the second
last symbol from the right is 1.

q0 q1 q2

0, 1

1 0, 1

δ 0 1

→ q0 {q0} {q0, q1}
q1 {q2} {q2}

∗q2 ∅ ∅

April 2nd 2015, Lecture 5 TMV027/DIT321 6/22

Extending the Transition Function to Strings

As before, we define δ̂(q, x) by recursion on x .

Definition:
δ̂ : Q ×Σ∗ → Pow(Q)

δ̂(q, ǫ) = {q}
δ̂(q, ax) =

⋃
p∈δ(q,a) δ̂(p, x)

That is, if δ(q, a) = {p1, . . . , pn} then

δ̂(q, ax) = δ̂(p1, x) ∪ . . . ∪ δ̂(pn, x)

April 2nd 2015, Lecture 5 TMV027/DIT321 7/22

Language Accepted by a NFA

Definition: The language accepted by the NFA N = (Q,Σ, δ, q0,F) is
the set L(N) = {x ∈ Σ∗ | δ̂(q0, x) ∩ F 6= ∅}.

That is, a word x is accepted if δ̂(q0, x) contains at least one accepting
state.

Note: Again, we could write a program that simulates a NFA and let it
tell us whether a certain string is accepted or not.

Exercise: Do it!

April 2nd 2015, Lecture 5 TMV027/DIT321 8/22

Transforming a NFA into a DFA

For same examples it is much simpler to define a NFA than a DFA.

Example: The language with words of length divisible by 3 or by 5.

However, any language accepted by a NFA is also accepted by a DFA.

In general, the number of states of the DFA is about the number of states
in the NFA although it often has many more transitions.

In the worst case, if the NFA has n states, a DFA accepting the same
language might have 2n states.

The algorithm transforming a NFA into an equivalent DFA is called the
subset construction.

April 2nd 2015, Lecture 5 TMV027/DIT321 9/22

The Subset Construction

Definition: Given a NFA N = (QN ,Σ, δN , q0,FN) we construct a DFA
D = (QD ,Σ, δD , {q0},FD) such that L(D) = L(N) as follows:

QD = Pow(QN);

δD : QD × Σ → QD (that is, δD : Pow(QN)× Σ → Pow(QN))

δD(X , a) =
⋃

q∈X δN(q, a);

FD = {S ⊆ QN | S ∩ FN 6= ∅}.

Exercise: Implement the subset construction!

April 2nd 2015, Lecture 5 TMV027/DIT321 10/22

Remarks of the Subset Construction

If |QN | = n then |QD | = 2n.
Non accessible states in QD can be safely removed (we will see how to do

this later on in the course).

If X = {q1, . . . , qn} then δD(X , a) = δN(q1, a) ∪ . . . ∪ δN(qn, a).

In addition,

δD(∅, a) = ∅ δD({q}, a) = δN(q, a) δD(X , a) =
⋃

q∈X
δD({q}, a)

and
δD(X1 ∪ X2, a) = δD(X1, a) ∪ δD(X2, a)

Each accepting state (set) S in FD contains at least one accepting
state of N.

April 2nd 2015, Lecture 5 TMV027/DIT321 11/22

Example: Subset Construction

Let us convert this NFA into a DFA
q0 q1 q2

0, 1

1 0, 1

The DFA starts from {q0}. Only accessible states matter.

From {q0}, with 0, we go to q0 so δD({q0}, 0) = {q0}.

From {q0}, with 1, we go to q0 or to q1. Then, δD({q0}, 1) = {q0, q1}.

From {q0, q1}, with 0, we go to q0 or to q2. Then, δD({q0, q1}, 0) = {q0, q2}.

From {q0, q1}, with 1, we go to q0 or q1 or q2. Then, δD({q0, q1}, 1) = {q0, q1, q2}.

etc...

April 2nd 2015, Lecture 5 TMV027/DIT321 12/22

Example: Subset Construction (cont.)

The complete (and simplified) DFA from the previous NFA is:

q0

q0, q1

q0, q2

q0, q1, q2

0 1

0

1

1

0 0

1

The DFA remembers the last two bits seen and accepts a word if the
next-to-last bit is 1.

By only computing the accessible states (from the start state) we are able
to keep the total number of states to 4 (and not 8).

April 2nd 2015, Lecture 5 TMV027/DIT321 13/22

Example: NFA Representation of Gilbreath’s Principle

Let us shuffle 2 non-empty alternating decks of cards, one starting with a
red card and one starting with a black one.
How does the resulting deck look like?

Let Σ = {B ,R} represent a black or red card respectively.

q0

q1

q2

q3

q4

q5

R

B

B

R

BR
R

B

B

R

B

R

q0 starts with B and R

q1 both start with B

q2 both start with R

q3 starts with B and ǫ

q4 starts with R and ǫ

q5 both ǫ

How does the resulting deck look like? Build the corresponding DFA!
April 2nd 2015, Lecture 5 TMV027/DIT321 14/22

Example: DFA Representation of Gilbreath’s Principle

q0

q1q3

q2q4

q2q4q5

q1q3q5

q0q3q4q5q

R

B

B

R

B

R

B

R

R

B

B

R

R ,G

How does the resulting deck look like?
April 2nd 2015, Lecture 5 TMV027/DIT321 15/22

Application of NFA: Text Search

Suppose we want to find occurrences of certain keywords in a text.

We could design a NFA that enters in an accepting state when it has
recognised one of these keywords.

Then we could either implement the NFA or transform it to a DFA and get
a “deterministic” (efficient) program.

Once we prove the subset construction correct, then we know the DFA will
be correct (if the NFA is!).

This is a good example of a derivation of a program (the DFA) from a specification (the

NFA).

April 2nd 2015, Lecture 5 TMV027/DIT321 16/22

Application of NFA: Text Search

The following (easy to write) NFA searches for the keywords web and ebay:

A

B C D

E F G H

a ∈ Σ
w

e b

e

b a y

a ∈ Σ a ∈ Σ

If one applies the subset construction one obtains the (complicated) DFA
of page 71 in the book.

Observe that the obtained DFA has the same number of states as the
NFA, but it is much more difficult to define directly!
April 2nd 2015, Lecture 5 TMV027/DIT321 17/22

Towards the Correction of the Subset Construction

Proposition: ∀x .∀q. δ̂N(q, x) = δ̂D({q}, x).

Proof: By induction on x we prove P(x) : ∀q. δ̂N(q, x) = δ̂D({q}, x).

Base case: trivial.

Inductive step: Assuming P(x) we prove P(ax).

δ̂N(q, ax) =
⋃

p∈δN (q,a) δ̂N(p, x) by definition of δ̂N

=
⋃

p∈δN (q,a) δ̂D({p}, x) by IH with state p

= δ̂D(δN(q, a), x) see lemma below

= δ̂D(δD({q}, a), x) remark on slide 11

= δ̂D({q}, ax) by definition of δ̂D

Lemma: For all words x and sets of states S,
δ̂D(S , x) =

⋃
p∈S δ̂D({p}, x).

April 2nd 2015, Lecture 5 TMV027/DIT321 18/22

Correction of the Subset Construction

Theorem: Given a NFA N, if D is the DFA constructed from N by the
subset construction then L(N) = L(D).

Proof: x ∈ L(N) iff δ̂N(q0, x) ∩ FN 6= ∅ iff δ̂N(q0, x) ∈ FD .

By the previous proposition, then δ̂D({q0}, x) ∈ FD .

Since {q0} is the starting state in D, then x ∈ L(D).

April 2nd 2015, Lecture 5 TMV027/DIT321 19/22

Equivalence between DFA and NFA

Theorem: A language L is accepted by some DFA iff L is accepted by
some NFA.

Proof: The “if” part is the result of the previous theorem (correctness of
subset construction).

For the “only if” part we need to transform the DFA into a NFA.

Intuitively: each DFA can be seen as a NFA where there exists only one
choice at each stage.

Formally: given D = (Q,Σ, δD , q0,F) we define N = (Q,Σ, δN , q0,F)
such that δN(q, a) = {δD(q, a)}.

It only remains to show (by induction on x) that if δ̂D(q0, x) = p then
δ̂N(q0, x) = {p}.

April 2nd 2015, Lecture 5 TMV027/DIT321 20/22

Regular Languages

Recall: A language L ⊆ Σ∗ is regular iff there exists a DFA D on the
alphabet Σ such that L = L(D).

Proposition: A language L ⊆ Σ∗ is regular iff there exists a NFA N such
that L = L(N).

Proof: If L is regular then L = L(D) for some DFA D.
To any DFA D we can associate a NFA ND such that L(D) = L(ND) as in
previous theorem.

In the other direction, if L = L(N) for some NFA N then, the subset
construction gives a DFA D such that L(N) = L(D) so L is regular.

April 2nd 2015, Lecture 5 TMV027/DIT321 21/22

Overview of Next Lecture (in HC2)

Sections 2.3.6, 2.5–2.5.5:

More on NFA;

NFA with ǫ-transitions;

Equivalence between DFA and ǫ-NFA.

April 2nd 2015, Lecture 5 TMV027/DIT321 22/22

