
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2015

Lecture 3
Ana Bove

March 26th 2015

Overview of today’s lecture:

Formal proofs;

Mathematical and course-of-values induction;

Inductively defined sets;

Proofs by structural induction.

Recap: Logic, Sets, Relations, Functions, Alphabets

Propositions, truth values, connectives, predicates, quantifiers;

Sets, how to define them, membership, operations on sets, equality,
laws;

Relations, properties (reflexive, symmetric, transitive, equivalence),
partial vs total order, partitions, equivalence class, quotient;

Functions, domain, codomain, image, partial vs total, injective,
surjective, bijective, inverse, composition, restriction;

Monoids, homomorphisms;

Alphabets, words, functions on words (concatenation, length,
reverse), prefix vs suffix, power;

Languages, operation on languages, equality, laws, functions between
languages.

March 26th 2015, Lecture 3 TMV027/DIT321 1/23

How Formal Should a Proof Be?

Depends on the purpose but

Should be convincing;

Should not leave too much out;

The validity of each step should be easily understood.

Valid steps are for example:

Reduction to definition:

“x is a positive integer” is equivalent to “x > 0”;

Use of hypothesis;

Combining previous facts and known statements:

“Given A⇒ B and A we can conclude B by modus ponens”.

March 26th 2015, Lecture 3 TMV027/DIT321 2/23

Form of Statements

Statements we want to prove are usually of the form

If H1 and H2 . . . and Hn then C1 and . . . and Cm

or

P1 and . . . and Pk iff Q1 and . . . and Qm

for n > 0; m, k > 1.

Note: Observe that one proves the conclusion assuming the validity of
the hypotheses!

Example: We can easily prove “if 0 = 1 then 4 = 2.000”.
March 26th 2015, Lecture 3 TMV027/DIT321 3/23

Different Kinds of Proofs

Proofs by Contradiction

If H then C

is logically equivalent to

H and not C implies “something known to be false”.

Example: If x 6= 0 then x2 6= 0.

Proofs by Contrapositive
“If H then C ” is logically equivalent to “If not C then not H”

Proofs by Counterexample
We find an example that “breaks” what we want to prove.

Example: All Natural numbers are odd.
March 26th 2015, Lecture 3 TMV027/DIT321 4/23

Proving a Property over the Natural Numbers

How to prove an statement over all the Natural numbers?

Example: ∀n ∈ N. if n | 4 then n | 2.

First we need to look at what the Natural numbers are ...

They are an inductively defined set and can be defined by the following
two rules:

0 ∈ N
n ∈ N

n + 1 ∈ N

(More on inductively defined sets on page 16.)

March 26th 2015, Lecture 3 TMV027/DIT321 5/23

Mathematical Induction

Given P(0) and ∀n ∈ N. P(n)⇒ P(n + 1) then ∀n ∈ N. P(n).

base case︷︸︸︷
P(0)

inductive step︷ ︸︸ ︷
∀n ∈ N. P(n)⇒ P(n + 1)

∀n ∈ N. P(n)︸ ︷︷ ︸
statement to prove

More generally:

P(i),P(i + 1), . . . ,P(j) ∀j 6 n. P(n)⇒ P(n + 1)

∀i 6 n. P(n)

Hypotheses in read are called inductive hypotheses (IH).

March 26th 2015, Lecture 3 TMV027/DIT321 6/23

Course-of-Values (or Strong/Complete) Induction

Variant of mathematical induction.

P(0) ∀n ∈ N. (∀m ∈ N. 0 6 m 6 n⇒ P(m))⇒ P(n + 1)

∀n ∈ N. P(n)

Or more generally:

P(i),P(i + 1), . . . ,P(j) ∀j < n. (∀m. i 6 m < n⇒ P(m))⇒ P(n)

∀i 6 n. P(n)

March 26th 2015, Lecture 3 TMV027/DIT321 7/23

Example: Proof by Induction

Proposition: Let f (0) = 0 and f (n + 1) = f (n) + n + 1. Then,
∀n ∈ N. f (n) = n(n + 1)/2.

Proof: By mathematical induction on n.

Let P(n) be f (n) = n(n + 1)/2.

Base case: We prove that P(0) holds.

Inductive step: We prove that if for a given n > 0 P(n) holds (our IH),
then P(n + 1) also holds.

Closure: Now we have established that for all n, P(n) is true!
In particular, P(0),P(1),P(2), . . . ,P(15), . . . hold.

March 26th 2015, Lecture 3 TMV027/DIT321 8/23

Example: Proof by Induction

Proposition: If n > 8 then n can be written as a sum of 3’s and 5’s.

Proof: By course-of-values induction on n.

Let P(n) be“n can be written as a sum of 3’s and 5’s”.

Base cases: P(8),P(9) and P(10) hold.

Inductive step: We shall prove that if P(8),P(9),P(10), . . . ,P(n) hold for
n > 10 (our IH) then P(n + 1) holds.

Observe that if n > 10 then n > n + 1− 3 > 8.
Hence by inductive hypothesis P(n + 1− 3) holds.
By adding an extra 3 then P(n + 1) holds as well.

Closure: ∀n > 8. n can be written as a sum of 3’s and 5’s.

March 26th 2015, Lecture 3 TMV027/DIT321 9/23

Example: All Horses have the Same Colour

March 26th 2015, Lecture 3 TMV027/DIT321 10/23

Example: Proof by Induction

Proposition: All horses have the same colour.

Proof: By mathematical induction on n.

Let P(n) be “in any set of n horses they all have the same colour”.

Base cases: P(0) is not interesting in this example.
P(1) is clearly true.

Inductive step: Let us show that P(n) (our IH) implies P(n + 1).
Let h1, h2, . . . , hn, hn+1 be a set of n + 1 horses.
Take h1, h2, . . . , hn. By IH they all have the same colour.
Take now h2, h3, . . . , hn, hn+1. Again, by IH they all have the
same colour.
Hence, by transitivity, all horses h1, h2, . . . , hn, hn+1 must
have the same colour.

Closure: ∀n. all the n horses in the set have the same colour.

March 26th 2015, Lecture 3 TMV027/DIT321 11/23

Example: What Went Wrong???

March 26th 2015, Lecture 3 TMV027/DIT321 12/23

Mutual Induction

Sometimes we cannot prove a single statement P(n) but rather a group of
statements P1(n),P2(n), . . . ,Pk(n) simultaneously by induction on n.

This is very common in automata theory where we need an statement for
each of the states of the automata.

March 26th 2015, Lecture 3 TMV027/DIT321 13/23

Example: Proof by Mutual Induction

Let f , g , h : N→ {0, 1} be as follows:

f (0) = 0 g(0) = 1 h(0) = 0
f (n + 1) = g(n) g(n + 1) = f (n) h(n + 1) = 1− h(n)

Proposition: ∀n. h(n) = f (n).

Proof: If P(n) is “h(n) = f (n)” it does not seem possible to prove
P(n)⇒ P(n + 1) directly.

We strengthen P(n) to P ′(n) as follows:

Let P ′(n) be “h(n) = f (n) ∧ h(n) = 1− g(n)”.

We prove P ′(0) : h(0) = f (0) ∧ h(0) = 1− g(0).

Then we prove that P ′(n)⇒ P ′(n + 1).

Since ∀n. P ′(n) is true then ∀n. P(n) is true.
March 26th 2015, Lecture 3 TMV027/DIT321 14/23

Recursive Data Types

How do you define Natural numbers, lists, trees, ... in your favourite
programming language?

This is how you would defined them in Haskell:

data Nat = Zero | Succ Nat

data List a = Nil | Cons a (List a)

data BTree a = Leaf a | Node a (BTree a) (BTree a)

(Observe the similarity between the definition of Nat above and the rules in slide 5.)

March 26th 2015, Lecture 3 TMV027/DIT321 15/23

Inductively Defined Sets

Natural Numbers:

Base case: 0 is a Natural number;
Inductive step: If n is a Natural number then n + 1 is a Natural number;
Closure: There is no other way to construct Natural numbers.

Finite Lists:

Base case: [] is the empty list over any set A;
Inductive step: If a ∈ A and xs is a list over A then a : xs is a list over A;
Closure: There is no other way to construct lists.

Finitely Branching Trees:

Base case: (a) is a tree over any set A;
Inductive step: If t1, . . . , tk are tree over the set A and a ∈ A,

then (a, t1, . . . , tk) is a tree over A;
Closure: There is no other way to construct trees.

...
March 26th 2015, Lecture 3 TMV027/DIT321 16/23

Inductively Defined Sets (Cont.)

To define a set S by induction we need to specify:

Base cases: e1, . . . , em ∈ S ;

Inductive steps: Given s1, . . . , sni ∈ S ,
then c1[s1, . . . , sn1], . . . , ck[s1, . . . , snk] ∈ S ;

Closure: There is no other way to construct elements in S .
(We will usually omit this part.)

Example: The set of simple Boolean expressions is defined as:

Base cases: true and false are Boolean expressions;

Inductive steps: if a and b are Boolean expressions then

(a) not a a and b a or b

are also Boolean expressions.
March 26th 2015, Lecture 3 TMV027/DIT321 17/23

Proofs by Structural Induction

Generalisation of mathematical induction to other inductively defined
object such as lists, trees, . . .

VERY useful in computer science: it allows to prove properties over the
(finite) elements in a data type!

Given an inductively defined set S , to prove ∀s ∈ S . P(s) then:

Base cases: We prove that P(e1), . . . ,P(em);

Inductive steps: Assuming P(s1), . . . ,P(sni) (our inductive hypotheses IH),
we prove P(c1[s1, . . . , sn1]), . . . ,P(ck[s1, . . . , snk]);

Closure: ∀s ∈ S . P(s).
(We will usually omit this part.)

March 26th 2015, Lecture 3 TMV027/DIT321 18/23

Inductive Sets and Structural Induction

Inductive definition of S :

e1 ∈ S
· · ·

em ∈ S

s1, . . . , sn1 ∈ S

c1[s1, . . . , sn1] ∈ S
· · · s1, . . . , snk ∈ S

ck[s1, . . . , snk] ∈ S

Inductive principle associated to S :

base cases





P(e1)
...

P(em)

inductive steps





∀s1, . . . , sn1 ∈ S . P(s1) · · ·P(sn1)⇒ P(c1[s1, . . . , sn1])
...

∀s1, . . . , snk ∈ S . P(s1) · · ·P(snk)⇒ P(ck[sk1 , . . . , snk])

∀s ∈ S . P(s)
March 26th 2015, Lecture 3 TMV027/DIT321 19/23

Example: Structural Induction over Lists

We can now use recursion to define functions over an inductively defined
set and then prove properties of these functions by structural induction.

Let us (recursively) define the append and reverse functions over lists:

[] ++ ys = ys rev [] = []
(a : xs) ++ ys = a : (xs ++ ys) rev (a : xs) = rev xs ++[a]

Assume append is associative and that ys ++ [] = ys.

Proposition: ∀xs, ys ∈ List A. rev (xs ++ ys) = rev ys ++rev xs.

Proof: By structural induction on xs ∈ List A.
P(xs) is ∀ys ∈ List A. rev (xs ++ ys) = rev ys ++rev xs.
Base case: We prove P[].
Inductive step: We show that for all xs ∈ List A and a ∈ A, P(xs) implies
P(a : xs).
Closure: ∀xs ∈ List A. P(xs).
March 26th 2015, Lecture 3 TMV027/DIT321 20/23

Example: Structural Induction over Trees

Let us (recursively) define functions counting the number of edges and of
nodes of a tree:

ne(a) = 0 nn(a) = 1
ne(a, t1, . . . , tk) = k+ nn(a, t1, . . . , tk) = 1+

ne(t1) + . . . + ne(tk) nn(t1) + . . . + nn(tk)

Proposition: ∀t ∈ Tree A. nn(t) = 1 + ne(t).

Proof: By structural induction on t ∈ Tree A.
P(t) is nn(t) = 1 + ne(t).
Base case: We prove P(a).
Inductive step: We show that for all t1, . . . , tk ∈ Tree A and a ∈ A, if
P(t1), . . . ,P(tk) then P(a, t1, . . . , tk).
Closure: ∀t ∈ Tree A. P(t).

March 26th 2015, Lecture 3 TMV027/DIT321 21/23

Proofs by Induction: Overview of the Steps to Follow

1 State property P to prove.
Might be more general than the actual statement we need to prove.

2 Determine and state the method to use in the proof!!!!
Example: (Mathematical) Induction on the length of the list, course-of-values

induction on the height of a tree, structural induction on the structure of certain

data type, ...

3 Identify and state base case(s).
Could be more than one! Not always trivial to determine.

4 Prove base case(s).

5 Identify and state IH!
Will depend on the method to be used (see point 2).

6 Prove inductive step(s).

7 (State closure.)
8 Deduce your statement from P (if not the same).

March 26th 2015, Lecture 3 TMV027/DIT321 22/23

Overview of Next Lecture (HC2)

Sections 2–2.2:

DFA: deterministic finite automata.

March 26th 2015, Lecture 3 TMV027/DIT321 23/23

