Finite Automata Theory and Formal Languages TMV027/DIT321– LP4 2015

Lecture 2 Ana Bove

March 24th 2015

Overview of today's lecture:

- Recap on logic;
- Recap on sets, relations and functions;
- Central concepts of automata theory.

Propositional Logic

Definition: A *proposition* is an statement which is either *true* (T) or *false* (F).

Example: My name is Ana.

I come from Uruguay.

I have 3 children.

I can speak 4 different languages.

It is not always easy to know what the *truth value* of a proposition is, that is, whether it is true or false.

Goldbach's conjecture: Every even integer greater than 2 can be expressed as the sum of two primes.

Connective and Truth Tables

We can combine propositions by using *connectives*.:

- \neg : negation, not
- \wedge : conjunction, and
- \lor : disjunction, or
- \Rightarrow : conditional, if-then, \rightarrow
- \Leftrightarrow : equivalence, if-and-only-if, \leftrightarrow

These are their *truth tables* (observe the conditional...):

р	q	$ \neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
T	T	F	Т	Т	Т	T
Т	F	F	F	Т	F	F
F	Т	T	F	Т	Т	F
F	F	T	F	F	Т	Т

March 24th 2015, Lecture 2

TMV027/DIT321

Conditionals

Example: Consider the statement *if it rains then I take my umbrella*.

What happens when it doesn't rain? Does it matter whether I take the umbrella?

NO! The condition only says what must happen when it *DOES* rain!

Let p be "it rains". Let q be "I take the umbrella".

Recall truth table for conditional:

р	q	$p \Rightarrow q$
Τ	Т	T
Τ	F	F
F	Т	Т
F	F	T

Combined Propositions

Example: Express *either you pass the assignments and you pass the course or you don't pass the course* with propositions and construct its truth table.

Let p be "you pass the assignments". Let q be "you pass the course".

Then the sentence is expressed by $(p \land q) \lor \neg q$.

р	q	$p \wedge q$	$\neg q$	$(p \wedge q) \lor \neg q$
Т	T	Т	F	Т
Т	F	F	T	Т
F	Т	F	F	F
F	F	F	T	Т

March 24th 2015, Lecture 2

TMV027/DIT32

4/44

Tautologies and Logical Equivalence

Definition: A proposition that is always true is called a *tautology*.

Example: The *law of the excluded middle* is a tautology in classical logic

р	$\neg p$	$p \lor \neg p$
Т	F	Т
F	Т	Т

Definition: Two propositions are *logically equivalent* (\equiv) if they have the same truth table.

Example: $p \Rightarrow q$ is logically equivalent to $\neg p \lor q$:

р	q	$p \Rightarrow q$	$ \neg p$	$ eg p \lor q$
Τ	Τ	Т	F	Т
Τ	F	F	F	F
F	Т	Т	T	Т
F	F	Т	T	Т

Laws of (Classical) Logic

٦q

Exercise: Construct the truth tables and check the logical equivalences!

March 24th 2015, Lecture 2

TMV027/DIT321

Statements with Variables

Example: Consider the following property for $x \in \mathbb{N}$ (Natural numbers):

if x = 9i then x = 3j for some $i, j \ge 0$

Is there any x which is multiple of 9 but x is NOT multiple of 3? NO! Then the property is clearly true for 0, 9, 18, 27, ...

Is the property true for 3, 6, 12, 15, ...? YES!

Is the property true for 2, 4, 8, 10, ...? YES!

Is the property true for 0, 1, 5, 7, 11, ...? YES!

Actually we have that

```
\forall x.if x = 9i then x = 3j for some i, j \ge 0
```

Note: When statements have variables we are actually working on *predicate logic*.

Predicate Logic

Definition: A *predicate* is a statement with one or more variables.

If values are assigned to all variable in a predicate it becomes a proposition.

Reasoning in predicate logic is more complicated since variables can range over an infinite set of values.

Definition: The expressions *for all* (\forall) and *exists* (\exists) are called *quantifiers*.

Example: Express the following 2 statements in predicate logic:

- For every number x there is a number y such that x is equal to y $\forall x. \exists y. x = y$
- There is a number x such that for every number y then x is equal to y $\exists x. \forall y. x = y$

Are they the same statement?

March 24th 2015, Lecture 2

TMV027/DIT321

More Laws of (Classical) Logic

We have that

$$\neg \forall x. P(x) \equiv \exists x. \neg P(x)$$

and

$$\neg \exists x. P(x) \equiv \forall x. \neg P(x)$$

Sets

Definition: A *set* is a collection of well defined and distinct objects or elements.

A set might be finite or infinite.

Sets can be described/defined in different ways:

Enumeration: (only finite sets). {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}

Characteristic Property: $\{x \in \mathbb{N} \mid x \text{ is odd}\}.$

Operations on Other Sets: $A \cup B$, $A \cap B$, ...

Inductive Definitions: More on this later ...

March 24th 2015, Lecture 2

TMV027/DIT32

Membership on Sets

Definition: We denote that x is an *element* of set A by $x \in A$.

It is important to determine whether $x \in A$ or $x \notin A$. However this is not always possible.

Example: Let *P* be the set of programs that always terminate.

Can we always be sure if a certain program $pgr \in P$?

Russell's paradox: Let $R = \{x \mid x \notin x\}$.

Then $R \in R \Leftrightarrow R \notin R!$

Some Operations and Properties on Sets

Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$

Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$

Cartesian Product: $A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}$. Observe this is a collection of ordered pairs! $(x, y) \neq (y, x)$.

Difference: $S - A = \{x \mid x \in S \text{ and } x \notin A\}$. When the set S is known, S - A is written \overline{A} and is called the complement. S - A is sometimes denoted $S \setminus A$ and \overline{A} is sometimes denoted A'.

Subset: $A \subseteq B$ if for all $x \in A$ then $x \in B$.

Equality: A = B if $A \subseteq B$ and $B \subseteq A$.

Proper Subset: $A \subset B$ if $A \subseteq B$ and $A \neq B$.

March 24th 2015, Lecture 2

TMV027/DIT321

Some Particular Sets

Empty set: \emptyset is the set with no elements. We have $\emptyset \subseteq S$ for any set S.

Singleton sets: Sets with only one element: $\{p_0\}, \{p_1\}$.

Finite sets: Set with a finite number *n* of elements: $\{p_1, \ldots, p_n\} = \{p_1\} \cup \ldots \cup \{p_n\}.$

Power sets: $\mathcal{P}ow(S)$ the set of all subsets of the set S. $\mathcal{P}ow(S) = \{A \mid A \subseteq S\}.$ Observe that $\emptyset \in \mathcal{P}ow(S)$ and $S \in \mathcal{P}ow(S)$. Also, if |S| = n then $|\mathcal{P}ow(S)| = 2^n$.

Note: $\emptyset \neq \{\emptyset\}$!!

Algebraic Laws for Sets

Idempotent:	$A \cup A = A$	$A \cap A = A$
Commutative:	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Associative:	$(A\cup B)\cup C=A\cup (B\cup C)$	
	$(A \cap B) \cap C = A \cap (B \cap C)$	
Distributive:	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
de Morgan:	$\overline{(A\cup B)}=\overline{A}\cap\overline{B}$	$\overline{(A\cap B)}=\overline{A}\cup\overline{B}$
Laws for \emptyset :	$A \cup \emptyset = A$	$A \cap \emptyset = \emptyset$
Laws for Universe:	$A \cup U = U$	$A \cap U = A$
Complements:	$\overline{\overline{A}} = A \qquad A \cup \overline{A} = U$	$A\cap \overline{A}=\emptyset$
	$\overline{U} = \emptyset$ $\overline{\emptyset} = U$	
Absorption:	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$

Exercise: Prove the equality of the sets by showing the double inclusion!

March 24th 2015, Lecture 2

TMV027/DIT321

Relations

Definition: A (binary) *relation* R between two sets A and B is a subset of $A \times B$, that is, $R \subseteq A \times B$.

Notation: $(a, b) \in R$, a R b, R(a, b), (a, b) satisfies R.

Definition: A relation R over a set S, that is $R \subseteq S \times S$, is

Reflexive if $\forall a \in S$. a R a;

Symmetric if $\forall a, b \in S$. $a R b \Rightarrow b R a$;

Transitive if $\forall a, b, c \in S$. $a R b \land b R c \Rightarrow a R c$.

Definition: If S has an equality relation $= \subseteq S \times S$ and $R \subseteq S \times S$ then R is antisymmetric if $\forall a, b \in S$. $a R b \land b R a \Rightarrow a = b$.

Example of Relations

Let $S = \{1, 2, 3\}$ and let $= \subseteq S \times S$ be as expected. Which of these relations are reflexive, symmetric, antisymmetric, transitive?

• $R_1 = \emptyset$	Symmetric, Antisymmetric, Transitive
• $R_2 = \{(1,2)\}$	Antisymmetric, Transitive
• $R_3 = \{(1,2), (2,3)\}$	Antisymmetric
• $R_4 = \{(1,2), (2,3), (1,3)\}$	Antisymmetric, Transitive
• $R_5 = \{(1,2), (2,1)\}$	Symmetric
• $R_6 = \{(1,2), (2,1), (1,1)\}$	Symmetric
• $R_7 = \{(1,2), (2,1), (1,1), (2,2)\}$	} Symmetric, Transitive
• $R_8 = \{(1,2), (2,1), (1,1), (2,2)\}$	(3,3)} <i>Reflexive, Symm, Trans</i>

Equivalent Relations and Partial Orders

Definition: A relation R over a set S that is reflexive, symmetric and transitive is called an *equivalence relation* over S.

Example: = is an equivalence over \mathbb{N} .

Definition: A relation R over a set S that is reflexive, antisymmetric and transitive is called a *partial order* over S.

Example: \leq is a partial order over \mathbb{N} .

Definition: A relation R over a set S is called a *total order* over S if:

- R is a partial order;
- $\forall a, b \in S$. $a R b \lor b R a$.

Example: \leq is a total order over \mathbb{N} .

Partitions

Definition: A set *P* is a *partition* over the set *S* if:

• Every element of P is a non-empty subset of S

 $\forall C \in P. \ C \neq \emptyset \land C \subseteq S;$

• Elements of *P* are pairwise disjoint

$$\forall C_1, C_2 \in P. \ C_1 \neq C_2 \Rightarrow C_1 \cap C_2 = \emptyset;$$

• The union of the elements of P is equal to S

$$\bigcup_{C\in P} C=S.$$

March 24th 2015, Lecture 2

TMV027/DIT321

Equivalent Classes

Let R be an equivalent relation over S.

Definition: If $a \in S$, then the *equivalent class* of a in S is the set defined as $[a] = \{b \in S \mid a R b\}$.

Lemma: $\forall a, b \in S$, [a] = [b] iff a R b.

Theorem: The set of all equivalence classes in *S* with respect to *R* form a partition over *S*.

Note: This partition is called the *quotient* and it is denoted as S/R.

Example: The rational numbers \mathbb{Q} can be formally defined as the equivalence classes of the quotient set $\mathbb{Z} \times \mathbb{Z}^+ / \sim$, where \sim is the equivalence relation defined by $(m_1, n_1) \sim (m_2, n_2)$ iff $m_1 n_2 =_{\mathbb{Z}} m_2 n_1$.

Functions

Definition: A *function* f from A to B is a relation $f \subseteq A \times B$ such that, given $x \in A$ and $y, z \in B$, if x f y and x f z then y = z.

If f is a function from A to B we write $f : A \rightarrow B$.

That x f y is usually written as f(x) = y.

Example: sq : $\mathbb{Z} \to \mathbb{N}$ such that sq $(n) = n^2$.

Observe that sq(2) = 4 and sq(-2) = 4.

March 24th 2015, Lecture 2

TMV027/DIT32

Domain, Codomain, Range and Image

Let $f : A \rightarrow B$.

Definition: The sets *A* and *B* are called the *domain* and the *codomain* of the function, respectively.

Definition: The set Dom(f) or Dom_f for which the *function is defined* is given by $\{x \in A \mid f(x) \text{ is defined}\} \subseteq A$.

We will also refer to Dom(f) as the domain of f.

Definition: The set $\{y \in B \mid \exists x \in A.f(x) = y\} \subseteq B$ is called the *range* or *image* of f and denoted Im(f) or Im_f .

Example: The image of sq is NOT all \mathbb{N} but $\{0, 1, 4, 9, 16, 25, 36, ...\}$.

Total and Partial Functions

Let $f : A \rightarrow B$.

Definition: If Dom(f) = A then f is called a *total* function. **Example:** sq is a total function.

Definition: If $Dom(f) \subset A$ then f is called a *partial* function.

Example: sqr : $\mathbb{N} \to \mathbb{N}$ such that sqr $(n) = \sqrt{n}$ is a partial function.

Note: In some cases it is not known if a function is partial or total.

Example: It is not known if collatz : $\mathbb{N} \to \mathbb{N}$ is total or not.

collatz(0) = 1	$collatz(n) = \int$	<i>n</i> /2	if <i>n</i> even
collatz(1) = 1	$\operatorname{Conatz}(n) = \begin{cases} \\ \\ \\ \end{cases}$	3n + 1	if <i>n</i> odd

March 24th 2015, Lecture 2

TMV027/DIT321

Injective or One-to-one Functions

Let $f : A \rightarrow B$.

Definition: f is called an *injective* or *one-to-one* function if $\forall x, y \in A.f(x) = f(y) \Rightarrow x = y$.

Alternatively:

Definition: f is called an *injective* or *one-to-one* function if $\forall x, y \in A. x \neq y \Rightarrow f(x) \neq f(y)$.

Exercise: Prove that double : $\mathbb{N} \to \mathbb{N}$ such that double(n) = 2n is injective.

The Pigeonhole Principle

"If you have more pigeons than pigeonholes and each pigeon flies into some pigeonhole, then there must be at least one hole with more than one pigeon."

More formally: if $f : A \to B$ is total and |A| > |B| then f cannot be *injective* and there must exist at least 2 different elements with the same image, that is, there must exist $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

This principle is often used to show the existence of an object without building this object explicitly.

Example: In a room with at least 13 people, at least 2 of them are born the same month.

March 24th 2015, Lecture 2

TMV027/DIT32

Surjective or Onto Functions

Let $f : A \to B$.

Definition: f is called an *surjective* or *onto* function if $\forall y \in B. \exists x \in A. f(x) = y.$

Note: If *f* is surjective then Im(f) = B.

Exercise: Prove that $f : \mathbb{R} \to \mathbb{R}$ such that f(n) = 2n + 1 is surjective.

Bijective and Inverse Functions

Definition: A function that is both injective and surjective is called a *bijective* function.

Definition: If $f : A \to B$ is a bijective function, then there exists an *inverse* function $f^{-1} : B \to A$ such that $\forall x \in A.f^{-1}(f(x)) = x$ and $\forall y \in B.f(f^{-1}(y)) = y$.

Exercise: Which is the inverse of $f : \mathbb{R} \to \mathbb{R}$ such that f(n) = 2n + 1?

Exercise: Is $g : \mathbb{Z} \to \mathbb{Z}$ such that g(n) = 2n + 1 bijective?

Lemma: If $f : A \to B$ is a bijective function, then $f^{-1} : B \to \text{Dom}_f(A)$ is also bijective.

March 24th 2015, Lecture 2

TMV027/DIT32

Composition and Restriction

Definition: Let $f : A \to B$ and $g : B \to C$. The *composition* $g \circ f : A \to C$ is defined as $g \circ f(x) = g(f(x))$.

Note: We need that $Im(f) \subseteq Dom(g)$ for the composition to be defined.

Example: If $f : \mathbb{Z} \to \mathbb{Z}$ is such that f(n) = 3n - 2 and $g : \mathbb{R} \to \mathbb{R}$ is such that g(m) = m/2, then $g \circ f : \mathbb{Z} \to \mathbb{R}$ is $g \circ f(x) = (3x - 2)/2$.

Definition: Let $f : A \to B$ and $S \subset A$. The *restriction* of f to S is the function $f_{|S} : S \to B$ such that $f_{|S}(x) = f(x), \forall x \in S$.

Monoids

Definition: A *monoid* is a set M with an associative binary operation $\cdot : M \times M \rightarrow M$ and an identity element ε such that:

Closure: $\forall a, b \in M$. $a \cdot b \in M$; Associativity: $\forall a, b, c \in M$. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$; Identity element: $\forall a \in M$. $\varepsilon \cdot a = a \cdot \varepsilon = a$.

Example: $(\mathbb{N}, +, 0)$, $(\mathbb{Z}, +, 0)$ and $(\mathbb{R}, +, 0)$ are monoids.

Example: $(\mathbb{N}, *, 1)$, $(\mathbb{Z}, *, 1)$ and $(\mathbb{R}, *, 1)$ are monoids.

March 24th 2015, Lecture 2

TMV027/DIT321

Homomorphisms

Definition: A *homomorphism* is a structure-preserving function between sets.

Let $(M, \cdot_M, \varepsilon_M)$ and $(N, \cdot_N, \varepsilon_N)$ be monoids.

 $h: M \to N$ is a homomorphism if:

$$h(\varepsilon_M) = \varepsilon_N$$

$$h(x \cdot_M y) = h(x) \cdot_N h(y)$$

Exercise: Are $\lfloor _ \rfloor, \lceil _ \rceil : \mathbb{R} \to \mathbb{N}$ homomorphisms between $(\mathbb{R}, +, 0)$ and $(\mathbb{N}, +, 0)$?

Exercise: Is $|_{-}| : \mathbb{Z} \to \mathbb{N}$ a homomorphism between $(\mathbb{Z}, *, 1)$ and $(\mathbb{N}, *, 1)$?

Central Concepts of Automata Theory: Alphabets

Definition: An *alphabet* is a finite, non-empty set of symbols, usually denoted by Σ .

The number of symbols in Σ is denoted as $|\Sigma|$.

Type convention: We will use a, b, c, \ldots to denote symbols.

Note: Alphabets will represent the observable events of the automata. **Example:** Some alphabets:

- on/off-switch: $\Sigma = {Push};$
- simple vending machine: $\Sigma = \{5 \ kr, choc\};$
- complex vending machine: $\Sigma = \{5 \ kr, 10 \ kr, choc, big choc\};$
- parity counter: $\Sigma = \{p_0, p_1\}.$

March 24th 2015, Lecture 2

TMV027/DIT321

Strings or Words

Definition: *Strings/Words* are finite sequence of symbols from some alphabet.

Type convention: We will use w, x, y, z, ... to denote words.

Note: Words will represent the *behaviour* of an automaton. **Example:** Some behaviours:

- on/off-switch: Push Push Push;
- simple vending machine: 5 kr choc 5 kr choc;
- parity counter: p_0p_1 or $p_0p_0p_0p_1p_1p_0$.

Note: Some words do NOT represent *behaviour* though **Example:** simple vending machine: choc choc choc.

Inductive Definition of Σ^*

Definition: Σ^* is the set of *all words* for a given alphabet Σ .

This can be described inductively in at least 2 different ways:

 Base case: ε ∈ Σ*; Inductive step: if a ∈ Σ and x ∈ Σ* then ax ∈ Σ*. (We will usually work with this definition.)

2 Base case: $\epsilon \in \Sigma^*$; Inductive step: if $a \in \Sigma$ and $x \in \Sigma^*$ then $xa \in \Sigma^*$.

We can (recursively) *define* functions over Σ^* and (inductively) *prove* properties about those functions. (More on induction next lecture.)

March 24th 2015, Lecture 2

TMV027/DIT32

Concatenation

Definition: Given the strings x and y, the *concatenation* xy is defined as:

$$\epsilon y = y$$

 $(ax')y = a(x'y)$

Example: Observe that in general $xy \neq yx$.

If x = 010 and y = 11 then xy = 01011 and yx = 11010.

Lemma: If Σ has more than one symbol then concatenation is not commutative.

Note: Σ^* is a monoid if we take concatenation as \cdot and ϵ as ε .

Prefix and Suffix

Definition: Given x and y words over a certain alphabet Σ :

- x is a *prefix* of y iff there exists z such that y = xz;
- x is a *suffix* of y iff there exists z such that y = zx.

Note: $\forall x. \epsilon$ is both a prefix and a suffix of x.

Note: $\forall x. x$ is both a prefix and a suffix of x.

March 24th 2015, Lecture 2

TMV027/DIT32

Length and Reverse

Definition: The *length* function $|_{-}| : \Sigma^* \to \mathbb{N}$ is defined as:

 $\begin{aligned} |\epsilon| &= 0\\ |ax| &= 1 + |x| \end{aligned}$

Example: |01010| = 5.

Definition: The *reverse* function $rev(_): \Sigma^* \to \Sigma^*$ as:

$$\mathsf{rev}(\epsilon) = \epsilon \ \mathsf{rev}(ax) = \mathsf{rev}(x)a$$

Intuitively, $rev(a_1 \ldots a_n) = a_n \ldots a_1$.

Power

Languages

Definition: Given an alphabet Σ , a *language* \mathcal{L} is a subset of Σ^* , that is, $\mathcal{L} \subseteq \Sigma^*$.

Note: If $\mathcal{L} \subseteq \Sigma^*$ and $\Sigma \subseteq \Delta$ then $\mathcal{L} \subseteq \Delta^*$.

Note: A language can be either finite or infinite.

Example: Some languages:

- Swedish, English, Spanish, French, ...;
- Any programming language;
- \emptyset , $\{\epsilon\}$ and Σ^* are languages over any Σ ;
- The set of prime Natural numbers $\{1, 3, 5, 7, 11, \ldots\}$.

March 24th 2015, Lecture 2

TMV027/DIT32

38/44

Some Operations on Languages

Definition: Given \mathcal{L} , \mathcal{L}_1 and \mathcal{L}_2 languages, we define the following languages:

Union, Intersection, ... : As for any set.

Concatenation: $\mathcal{L}_1\mathcal{L}_2 = \{x_1x_2 \mid x_1 \in \mathcal{L}_1, x_2 \in \mathcal{L}_2\}.$

Closure: $\mathcal{L}^* = \bigcup_{n \in \mathbb{N}} \mathcal{L}^n$ where $\mathcal{L}^0 = \{\epsilon\}$, $\mathcal{L}^{n+1} = \mathcal{L}^n \mathcal{L}$.

Note: We have then that $\emptyset^* = \{\epsilon\}$ and $\mathcal{L}^* = \mathcal{L}^0 \cup \mathcal{L}^1 \cup \mathcal{L}^2 \cup \ldots = \{\epsilon\} \cup \{x_1 \ldots x_n \mid n > 0, x_i \in \mathcal{L}\}$

Notation:
$$\mathcal{L}^+ = \mathcal{L}^1 \cup \mathcal{L}^2 \cup \mathcal{L}^3 \cup \ldots$$
 and $\mathcal{L}? = \mathcal{L} \cup \{\epsilon\}.$

Example: Let $\mathcal{L} = \{aa, b\}$, then $\mathcal{L}^0 = \{\epsilon\}, \ \mathcal{L}^1 = \mathcal{L}, \ \mathcal{L}^2 = \mathcal{L}\mathcal{L} = \{aaaa, aab, baa, bb\}, \ \mathcal{L}^3 = \mathcal{L}^2\mathcal{L}, \ldots$ $\mathcal{L}^* = \{\epsilon, aa, b, aaaa, aab, baa, bb, \ldots\}.$

How to Prove the Equality of Languages?

Given the languages \mathcal{L} and \mathcal{M} , how can we prove that $\mathcal{L} = \mathcal{M}$?

A few possibilities:

- Languages are sets so we prove that $\mathcal{L} \subseteq \mathcal{M}$ and $\mathcal{M} \subseteq \mathcal{L}$;
- Transitivity of equality: $\mathcal{L} = \mathcal{L}_1 = \ldots = \mathcal{L}_m = \mathcal{M};$

• We can reason about the elements in the language: **Example:** $\{a(ba)^n \mid n \ge 0\} = \{(ab)^n a \mid n \ge 0\}$ can be proved by induction on *n*. (More on induction next lecture.)

Algebraic Laws for Languages

All laws presented in slide 14 are valid.

In addition, we have all these laws on concatenation:

Associativity: $\mathcal{L}(\mathcal{MN}) = (\mathcal{LM})\mathcal{N}$ Concatenation is not commutative: $\mathcal{LM} \neq \mathcal{ML}$

Distributivity: $\mathcal{L}(\mathcal{M} \cup \mathcal{N}) = \mathcal{L}\mathcal{M} \cup \mathcal{L}\mathcal{N}$ $(\mathcal{M} \cup \mathcal{N})\mathcal{L} = \mathcal{M}\mathcal{L} \cup \mathcal{N}\mathcal{L}$ *Identity:* $\mathcal{L}{\epsilon} = {\epsilon}\mathcal{L} = \mathcal{L}$ Annihilator: $\mathcal{L}\emptyset = \emptyset \mathcal{L} = \emptyset$ *Other Rules:* $\emptyset^* = \{\epsilon\}^* = \{\epsilon\}$ $\mathcal{L}^+ = \mathcal{L}\mathcal{L}^* = \mathcal{L}^*\mathcal{L}$ $(\mathcal{L}^*)^* = \mathcal{L}^*$

Algebraic Laws for Languages (Cont.)

Note: While

 $\mathcal{L}(\mathcal{M}\cap\mathcal{N})\subseteq\mathcal{LM}\cap\mathcal{LN}\quad\text{and}\quad(\mathcal{M}\cap\mathcal{N})\mathcal{L}\subseteq\mathcal{ML}\cap\mathcal{NL}$

both hold, in general

 $\mathcal{LM}\cap\mathcal{LN}\subseteq\mathcal{L}(\mathcal{M}\cap\mathcal{N}) \quad \text{and} \quad \mathcal{ML}\cap\mathcal{NL}\subseteq(\mathcal{M}\cap\mathcal{N})\mathcal{L}$

don't.

Example: Consider the case where

$$\mathcal{L} = \{\epsilon, a\}, \quad \mathcal{M} = \{a\}, \quad \mathcal{N} = \{aa\}$$

Then $\mathcal{LM} \cap \mathcal{LN} = \{aa\}$ but $\mathcal{L}(\mathcal{M} \cap \mathcal{N}) = \mathcal{L}\emptyset = \emptyset$.

March 24th 2015, Lecture 2

TMV027/DIT321

Functions between Languages

Definition: A function $f : \Sigma^* \to \Delta^*$ between 2 languages should satisfy

 $f(\epsilon) = \epsilon$ f(xy) = f(x)f(y)

Intuitively, $f(a_1 \ldots a_n) = f(a_1) \ldots f(a_n)$.

Note: $f(a) \in \Delta^*$ if $a \in \Sigma$.

Note: Such an *f* is a homomorphism between two moniods.

Overview of Next Lecture

Sections 1.2–1.4 in the book and MORE:

- Formal Proofs;
- Inductively defined sets;
- Proofs by (structural) induction.

DO NOT MISS THIS LECTURE!!!

March 24th 2015, Lecture 2

TMV027/DIT321

44/44