
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2015

Lecture 14
Ana Bove

May 21st 2015

Overview of today’s lecture:

Turing machines.

Guest lecture by Prof. Aarne Ranta on
Automata and Grammars in Programming Language Technology

Recap: Context-free Languages

Closure properties for CFL:

Union, concatenation, closure, reversal, prefix and homomorphism;
Intersection and difference with a RL;
No closure under complement;

Decision properties for CFL:

Is the language empty?
Does a word belong to the language of a certain grammar?

The following problems are undecidable:

Is the CFG G ambiguous?
Is the CFL L inherently ambiguous?
If L1 and L2 are CFL, is L1 ∩ L2 = ∅?
If L1 and L2 are CFL, is L1 = L2? is L1 ⊆ L2?
If L is a CFL and P a RL, is P = L? is P ⊆ L?
If L is a CFL over Σ, is L = Σ∗?

Push-down automata.

May 21st 2015, Lecture 14 TMV027/DIT321 1/19



Undecidable Problems

Definition: An undecidable problem is a decision problem for which it is
impossible to construct a single algorithm that always leads to a yes-or-no
answer.

Example: Halting problem: does this program terminate?

To prove that a certain problem P is undecidable one usually reduces an
already known undecidable problem U to the problem P: instances of U
become instances of P.

(Can be seen like one “transforms” U so it “becomes” P).

That is, w ∈ U iff w ′ ∈ P for certain w and w ′.
Then, a solution to P would serve as a solution to U.

However, we know there are no solutions to U since U is known to be
undecidable.
Then we have a contradiction.
May 21st 2015, Lecture 14 TMV027/DIT321 2/19

Example of Undecidable Problem: Post’s Correspondence

It is an undecidable decision problem introduced by Emil Post in 1946.

Given words u1, . . . , un and v1, . . . , vn in {0, 1}∗, is it possible to
find i1, . . . , ik such that ui1 . . . uik = vi1 . . . vik ?

Example: Given u1 = 1, u2 = 10, u3 = 001, v1 = 011, v2 = 11, v3 = 00
we have that u3u2u3u1 = v3v2v3v1 = 001100011.

We can use grammars to show that the Post’s correspondence problem is
undecidable by showing that a grammar is ambiguous iff the PCP has a
solution.

(See Section 9.4 in the book.)

May 21st 2015, Lecture 14 TMV027/DIT321 3/19



Undecidable and Intractable Problems

The theory of undecidable problems provides a guidance about what we
may or may not be able to perform with a computer.

One should though distinguish between undecidable problems and
intractable problems, that is, problems that are decidable but require a
large amount of time to solve them.

(In daily life, intractable problems are more common than undecidable ones.)

To reason about both kind of problems we need to have a basic notion of
computation.

May 21st 2015, Lecture 14 TMV027/DIT321 4/19

Entscheidungsproblem (Decision Problem)

The Entscheidungsproblem (David Hilbert 1928) asks for an algorithm to
decide whether a given statement is provable from the axioms using the
rules of first-order logic.

To answer the question, the notion of algorithm had to be formally defined.

In 1936, Alonzo Church defined the concept of effective calculable based
on his λ-calculus.

Also in 1936, Alan Turing presented the Turing machines.

(It was then proved that λ-calculus and Turing machines are equivalent models of

computation.)

In 1936, both published independent papers showing that a general
solution to the Entscheidungsproblem is impossible.

May 21st 2015, Lecture 14 TMV027/DIT321 5/19



Alan Mathison Turing (23 June 1912 – 7 June 1954)

May 21st 2015, Lecture 14 TMV027/DIT321 6/19

Alan Mathison Turing

May 21st 2015, Lecture 14 TMV027/DIT321 7/19



Alan Mathison Turing

British computer scientist,
mathematician, logician and
cryptanalyst;

Considered the father of
theoretical computer science and
artificial intelligence;

Philosopher, mathematical
biologist;

Marathon and ultra distance
runner;

In the 50’ he also became
interested in chemistry.

May 21st 2015, Lecture 14 TMV027/DIT321 8/19

Alan Mathison Turing

He took his Ph.D. in 1938 at Princeton with Alonzo Church;

He invented the concept of a computer, called Turing Machine (TM);

Turing showed that TM could perform any kind of computation;

He also showed that his notion of computable was equivalent to
Church’s notion of effective calculable;

During the WWII he helped Britain to break the German Enigma
machines which shortened the war by 2-4 years and saved many lives!

Since 1966, ACM annually gives the Turing Award for contributions
to the computing community.

May 21st 2015, Lecture 14 TMV027/DIT321 9/19



Turing Machines (1936)

Theoretically, a TM is just as powerful as any other computer!
Powerful here refers only to which computations a TM is capable of doing, not to

how fast or efficiently it does its job.

Conceptually, a TM has a finite set of states, a finite alphabet
(containing a blank symbol), and a finite set of instructions;

Physically, it has a head that can read, write, and move along an
infinitely long tape (on both sides) that is divided into cells.

Each cell contains a symbol of the alphabet (possibly the blank
symbol):

· · · a1 a2 a3 a4 a5 · · ·
↑

May 21st 2015, Lecture 14 TMV027/DIT321 10/19

Turing Machines: More Concretely

Let � represents the blank symbol and let Σ be a non-empty
alphabet of symbols such that {�, L,R} ∩ Σ = ∅.
Now, we define Σ′ = Σ ∪ {�};

The read/write head of the TM is always placed over one of the cells.
We said that that particular cell is being read, examined or scanned;

At every moment, the TM is in a certain state q ∈ Q, where Q is a
non-empty and finite set of states;

In some cases, we consider a set F of final states.

May 21st 2015, Lecture 14 TMV027/DIT321 11/19



Turing Machines: Transition Functions

In one move, the TM will:

1 Change to a (possibly) new state;

2 Replace the symbol below the head by a (possibly) new symbol;

3 Move the head to the left (denoted L) or to the right (denoted R).

The behaviour of a TM is given by a possibly partial transition function

δ ∈ Q × Σ′ → Q × Σ′ × {L,R}

δ is such that for every q ∈ Q, a ∈ Σ′ there is at most one instruction.

Note: We have a deterministic TM.

May 21st 2015, Lecture 14 TMV027/DIT321 12/19

How to Compute with a TM?

Before the execution starts, the tape of a TM looks as follows:

· · · a1 a2 · · · an−1 an b1 · · · bm · · ·

↑

The input data is placed on the tape, if necessary separated with
blanks;

There are infinitely many blank to the left and to the right of the
input;

The head is placed on the first symbol of the input;

The TM is in a special initial state q0 ∈ Q;

The machine then proceeds according to the transition function δ.

May 21st 2015, Lecture 14 TMV027/DIT321 13/19



Turing Machine: Formal Definition

Definition: A TM is a 6-tuple (Q,Σ, δ, q0,�,F ) where:

Q is a non-empty, finite set of states;

Σ is a non-empty alphabet such that {�, L,R} ∩ Σ = ∅;
δ ∈ Q × Σ′ → Q × Σ′ × {L,R} is a transition function, where
Σ′ = Σ ∪ {�};
q0 ∈ Q is the initial state;

� is the blank symbol, � /∈ Σ;

F is a non-empty, finite set of final or accepting states, F ⊆ Q.

Note: In some cases, the set F is not relevant (compare with FA).

May 21st 2015, Lecture 14 TMV027/DIT321 14/19

Result of a Turing Machine

Definition: Let M = (Q,Σ, δ, q0,�,F ) be a TM.
We say that M halts if for certain q ∈ Q and a ∈ Σ, δ(q, a) is undefined.

Whatever is written in the tape when the TM halts can be considered as
the result of the computation performed by the TM.

If we are only interested in the result of a computation, we can omit F
from the formal definition of the TM.

May 21st 2015, Lecture 14 TMV027/DIT321 15/19



Examples

Example: Let Σ = {0, 1}, Q = {q0} and let δ be as follows:

δ(q0, 0) = (q0, 1,R)
δ(q0, 1) = (q0, 0,R)

What does this TM do?

Example: The execution of a TM might loop.

Consider the following set of instructions for Σ and Q as above.

δ(q0, a) = (q0, a,R) with a ∈ Σ ∪ {�}

May 21st 2015, Lecture 14 TMV027/DIT321 16/19

Recursive and Recursively Enumerable Languages

Definition: Let M = (Q,Σ, δ, q0,�,F ) be a TM.
The TM M accepts a word w ∈ Σ∗ if when we run M with w as input
data, the TM is in a final state when it halts.

Definition: The language accepted by a TM is the set of words that are
accepted by the TM.

Definition: A languages is called recursively enumerable if there is a TM
accepting the words in that language.

Definition: A Turing decider is a TM that never loops, that is, the TM
halts.

Definition: A language is recursive or decidable if there is a Turing
decider accepting the words in the language.

May 21st 2015, Lecture 14 TMV027/DIT321 17/19



Example of a Turing Decider

How to define a TM that accepts the language L = {ww r | w ∈ {0, 1}∗}?
(One can prove using the Pumping lemma that this language is not context-free.)

Let Σ = {0, 1,X ,Y }, Q = {q0, . . . , q7} and F = {q7},

Let a ∈ {0, 1}, b ∈ {X ,Y ,�}, and c ∈ {X ,Y }.

δ(q0, 0) = (q1,X ,R) δ(q0, 1) = (q3,Y ,R) δ(q0,�) = (q7,�,R)
δ(q1, a) = (q1, a,R) δ(q3, a) = (q3, a,R)
δ(q1, b) = (q2, b, L) δ(q3, b) = (q4, b, L)
δ(q2, 0) = (q5,X , L) δ(q4, 1) = (q5,Y , L)
δ(q5, a) = (q6, a, L) δ(q5, c) = (q7, c ,R)
δ(q6, a) = (q6, a, L) δ(q6, c) = (q0, c,R)

What happens with the input 0110?
And with the input 010?
May 21st 2015, Lecture 14 TMV027/DIT321 18/19

Overview of Next Lecture (in HC2)

More on Turing machines;

Summary of the course.

May 21st 2015, Lecture 14 TMV027/DIT321 19/19


