Finite Automata Theory and Formal Languages TMV027/DIT321– LP4 2015

Lecture 11 Ana Bove

May 7th 2015

Overview of today's lecture:

- Inference, derivations and parse trees;
- Ambiguity in grammars;
- Regular grammars.

Recap: Context-Free Grammars

- Defined the so-called context-free languages;
- Developed in the mid-1950s by Noam Chomsky;
- Defined as 4-tuples $G = (V, T, \mathcal{R}, S)$;
- Notions:
 - Recursive inference;
 - Derivations (\Rightarrow , \Rightarrow *), left-most and right-most derivations;
 - Sentential forms $(S \Rightarrow^* \alpha)$;
 - Parse trees, their heights and yields;
- $\mathcal{L}(G) = \{ w \in T^* \mid S \Rightarrow^{G} w \};$
- Proofs about grammars.

Inference, Derivations and Parse Trees

Given a CFG $G = (V, T, \mathcal{R}, S)$, the following statements are equivalents:

- The recursive inference procedure determines that string w is in the language of the variable A;
- $A \Rightarrow^* w;$
- $\bigcirc A \Rightarrow^* w;$

•
$$A \stackrel{rm}{\Rightarrow}^* w;$$

• There is a parse tree with root A and yield w.

Note: The equivalences of 2-5 are also valid when the string w contains variables.

May 7th 2015, Lecture 11

Inference, Derivations and Parse Trees (Cont.)

Showing $3 \Rightarrow 2$ and $4 \Rightarrow 2$ is trivial.

The next 7 slides contain the main ideas in the proofs of $1\Rightarrow5,\ 5\Rightarrow3,\ 5\Rightarrow4$ and $2\Rightarrow1.$

We will intuitively follow the proofs using the following grammar

 $\begin{array}{rrrr} E & \rightarrow & 0 \mid 1 \mid E + E \mid \text{if } B \text{ then } E \text{ else } E \\ B & \rightarrow & \text{True} \mid \text{False} \mid E < E \mid E == E \end{array}$

and the string "if 0 < 1 then 1 + 1 else 0".

From Recursive Inference to Parse Trees $(1 \Rightarrow 5)$

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG and $A \in V$. If the recursive inference tells us that w is in the language of A then there is a parse tree with root A and yield w.

Proof: By course-of-value induction on the number of steps in the recursive inference.

Base case: 1 step: Then we have a production $A \rightarrow w$ and it is trivial to build the tree.

Inductive Step: n + 1 steps: Our IH is that the statement is true for strings x and variables B such that x is in the language of B can be recursively inferred in at most n steps.

May 7th 2015, Lecture 11

TMV027/DIT32

From Recursive Inference to Parse Trees $(1 \Rightarrow 5)$ (Cont.)

Suppose the last step in the inference of w uses the production $A \rightarrow X_1 X_2 \dots X_k$.

We break w up as $w_1 w_2 \dots w_k$ where:

- If X_i is a terminal then $w_i = X_i$;
- If X_i is a variable then w_i is the string which was inferred to be in the language of X_i .

This inference took at most *n* steps and we can apply IH.

Then we have a tree with root X_i and yield w_i .

We can now construct a tree with root A, first line of children X_1, X_2, \ldots, X_k , and then the trees given by the IH when X_i is a variable or the corresponding terminal when X_i is a terminal.

The yield of the tree is the concatenation of the yields of the children of A which is $w_1w_2...w_k = w$.

From Trees to Leftmost Derivations $(5 \Rightarrow 3)$

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG. If there is a parse tree with root A and yield w then $A \Rightarrow^* w$ in G. **Proof:** By course-of-value induction in the height of the tree. Base case: Height 1: There must be a production $A \rightarrow w$ and then $A \stackrel{lm}{\Rightarrow} w \text{ and } A \stackrel{lm}{\Rightarrow}^* w.$ Inductive Step: Height n > 1: Let X_1, X_2, \ldots, X_k be the children of the root A. Note that there must be a production $A \to X_1 X_2 \dots X_k$. Now: If X_i is a terminal, define $w_i = X_i$; If X_i is a variable, then it is the root of a subtree. Let w_i be the yield of X_i . This subtree has height less than *n* and then by IH $X_i \stackrel{'''}{\Rightarrow} w_i$. Observe that $w = w_1 w_2 \dots w_k$. To construct a leftmost derivation for w we start at $A \stackrel{lm}{\Rightarrow} X_1 X_2 \dots X_k$. May 7th 2015. Lecture 11 From Trees to Leftmost Derivations $(5 \Rightarrow 3)$ (Cont.) By induction on *i* we show that $A \Rightarrow^* w_1 w_2 \dots w_{i-1} X_i X_{i+1} \dots X_k$. Base case: For i = 0 we already have $A \stackrel{lm}{\Rightarrow} X_1 X_2 \dots X_k$. Inductive Step: Assume $A \stackrel{lm}{\Rightarrow}^* w_1 w_2 \dots w_{i-1} X_i X_{i+1} \dots X_k$. If X_i is a terminal we do nothing. So $A \Rightarrow^* w_1 w_2 \dots w_{i-1} w_i X_{i+1} \dots X_k$; ② If X_i is a variable, by IH we have that $X_i \stackrel{lm}{\Rightarrow} \alpha_1 \stackrel{lm}{\Rightarrow} \alpha_2 \dots \stackrel{lm}{\Rightarrow} w_i$. Apply this sequence of derivations to go from $A \Rightarrow^* w_1 w_2 \dots w_{i-1} X_i X_{i+1} \dots X_k$ to $A \Rightarrow^{*} w_1 w_2 \dots w_{i-1} w_i X_{i+1} \dots X_k.$ Observe that each step is a leftmost derivation! When i = k then we have constructed a leftmost derivation $A \Rightarrow^* w_1 w_2 \dots w_{i-1} w_i w_{i+1} \dots w_k.$

From Trees to Rightmost Derivations $(5 \Rightarrow 4)$

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG. If there is a parse tree with root A and yield w then $A \stackrel{rm}{\Rightarrow}^* w$ in G.

Proof: The proof is similar to that of the previous theorem.

The difference is that we first need to expand X_k then X_{k-1} and so on until we get to X_1 .

May 7th 2015, Lecture 11

TMV027/DIT321

From Derivations to Recursive Inference $(2 \Rightarrow 1)$

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG. If $A \Rightarrow^* w$ then the recursive inference procedure applied to G determines that w is in the language of A.

Proof: By course-of-value induction on the length of the derivation of $A \Rightarrow^* w$.

Base case: 1 step: Then $A \rightarrow w$ is a production and the base part of the recursive inference will find that w is in the language of A.

Inductive Step: n + 1 steps: Our IH is that the statement holds for any derivation of at most n steps.

From Derivations to Recursive Inference $(2 \Rightarrow 1)$ (Cont.)

Let $A \Rightarrow X_1 X_2 \dots X_k \Rightarrow^* w$ be the first step.

Now, we can break w as $w = w_1 w_2 \dots w_k$ where:

• If X_i is a terminal then $X_i = w_i$;

If X_i is a variable then X_i ⇒^{*} w_i.
 This derivation takes at most n steps and then by IH w_i is inferred to be in the language of X_i.

If $A \Rightarrow X_1 X_2 \dots X_k \Rightarrow^* w$ then there must be a production $A \rightarrow X_1 X_2 \dots X_k$ and we know that each w_i is either X_i or belongs to the language of X_i .

The last step of the recursive inference procedure must use these facts to obtain that $w_1w_2...w_k$ is in the language of A.

May 7th 2015, Lecture 11

TMV027/DIT321

10/29

Ambiguity in Natural (English) Language

Dictionary definition:

Ambiguity: a word or expression that can be understood in two or more possible ways.

What do I mean when I say ...

- Kids make nutritious snacks;
- The lady hit the man with an umbrella;
- He gave her cat food;
- The man saw the boy with the binoculars;
- They are hunting dogs.

Example: Ambiguous Grammar

The following (simplified part of a) grammar produces ambiguity in programming languages with conditionals:

 $egin{array}{rcl} C &
ightarrow & ext{if} & b & ext{then} & C & ext{else} & C \ C &
ightarrow & ext{if} & b & ext{then} & C \ C &
ightarrow & s \end{array}$

The expression "if b then if b then s else s" can be interpreted in the following 2 different ways:

• if b then (if b then s else s)

 \bigcirc if b then (if b then s) else s

How should the parser of this language understand the expression?

May 7th 2015, Lecture 11

TMV027/DIT321

12/29

Example: Ambiguous Grammars

Example: Consider the following grammar

 $E \rightarrow 0 \mid 1 \mid E + E \mid E * E$

The sentential form E + E * E has the following 2 possible derivations

• $E \Rightarrow E + E \Rightarrow E + E * E$ • $E \Rightarrow E * E \Rightarrow E + E * E$

Observe the difference of the corresponding parse tree for each derivation.

Intuitively, there are 2 possible meanings for words like 1 + 1 * 0:

1 + (1 * 0) = 1
(1 + 1) * 0 = 0

Ambiguous Grammars

Definition: A CFG grammar $G = (V, T, \mathcal{R}, S)$ is *ambiguous* if there is at least a string $w \in T^*$ for which we can find two (or more) parse trees, each with root S and yield w.

If each string has at most one parse tree we say that the grammar is *unambiguous*.

Note: The existence of different *derivations* for a certain string does not necessarily mean the existence of different parse trees!

 $\bigcirc E \Rightarrow E + E \Rightarrow 1 + E \Rightarrow 1 + 0$

 $\bigcirc E \Rightarrow E + E \Rightarrow E + 0 \Rightarrow 1 + 0$

May 7th 2015, Lecture 11

TMV027/DIT321

Removing Ambiguity from Grammars

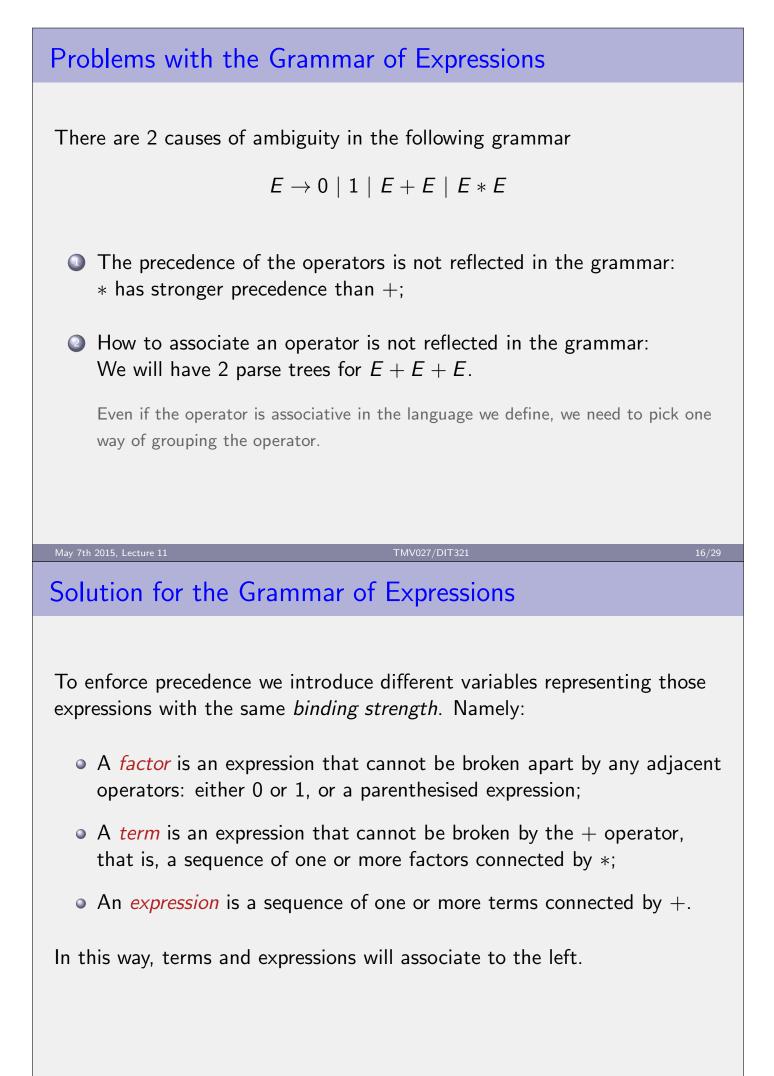
Unfortunately, there is no algorithm that can tell us if a grammar is ambiguous.

In addition, there is no algorithm that can remove ambiguity in a grammar.

Some context-free languages have *only* ambiguous grammars. These languages are called *inherently ambiguous*.

In these cases removal of ambiguity is impossible.

For the other cases, there are well-known techniques for eliminating ambiguity.



Unambiguous Grammar for Expressions

We have then the following *unambiguous* grammar:

 $\begin{array}{rrrr} F & \rightarrow & 0 & | & 1 & | & (E) \\ T & \rightarrow & F & | & T * F \\ E & \rightarrow & T & | & E + T \end{array}$

Note: It is not obvious that this is an unambiguous grammar!

Example: We have $E \Rightarrow^* 1 + 1 * 0$ with the usual meaning or $E \Rightarrow^* (1+1) * 0$ if we want to change the precedence of the operators.

Even $E \Rightarrow^* 1 + 0 + 1$ has now only one derivation.

May 7th 2015, Lecture 11

TMV027/DIT321

Leftmost/Rightmost Derivations and Ambiguity

We have seen that derivations might not be unique even if the grammar is unambiguous.

However, in an unambiguous grammars both the leftmost and the rightmost derivations will be unique.

Example: The grammar of slide 16 must be ambiguous since we have 2 leftmost derivations for 1 + 0 * 1:

$$\begin{array}{c} \bullet & E \stackrel{lm}{\Rightarrow} E + E \stackrel{lm}{\Rightarrow} 1 + E \stackrel{lm}{\Rightarrow} 1 + E * E \stackrel{lm}{\Rightarrow} 1 + 0 * E \stackrel{lm}{\Rightarrow} 1 + 0 * 1 \\ \\ \bullet & E \stackrel{lm}{\Rightarrow} E * E \stackrel{lm}{\Rightarrow} E + E * E \stackrel{lm}{\Rightarrow} 1 + E * E \stackrel{lm}{\Rightarrow} 1 + 0 * E \stackrel{lm}{\Rightarrow} 1 + 0 * 1 \end{array}$$

Note: In general we have

Number of leftmost derivations = number of rightmost derivations = number of parse trees.

Leftmost/Rightmost Derivations and Ambiguity

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG and let $w \in T^*$. w has 2 distinct parse trees iff w has 2 distinct leftmost (rightmost) derivations from S.

Proof: We sketch the proof dealing with leftmost derivations.

If) Start the tree with *S*. Examine each step in the derivation. Only the leftmost variable will be replaced. This variable corresponds to the leftmost node in the tree being constructed. The production used determines the children of this subtree. 2 different derivations will produce a subtree with different children.

Only-if) In slides 6–7 we constructed a leftmost derivation from a parse tree. Observe that if the trees have a node where different productions are used then so will the leftmost derivations.

May 7th 2015, Lecture 11

TMV027/DIT32

Example: Balanced Parentheses

The following grammar of parenthesis expressions is ambiguous

 $E \rightarrow \epsilon \mid EE \mid (E)$

since $E \stackrel{lm}{\Rightarrow} \epsilon$ and $E \stackrel{lm}{\Rightarrow} EE \stackrel{lm}{\Rightarrow} \epsilon E \stackrel{lm}{\Rightarrow} \epsilon \epsilon = \epsilon$.

Let us consider the following grammar instead:

$$S \to \epsilon \mid (S)S$$

We want to prove that:

Lemma: $\mathcal{L}(S) = \mathcal{L}(E)$.

Theorem: The grammar for S is not ambiguous.

Example: Balanced Parentheses (Cont.)

Lemma: $\mathcal{L}(S)\mathcal{L}(S) \subseteq \mathcal{L}(S)$.

Proof: By course-of-value induction on |w| we prove that if $w \in \mathcal{L}(S)$ then $w\mathcal{L}(S) \subseteq \mathcal{L}(S)$.

Base case: If |w| = 0 then $\epsilon \mathcal{L}(S) = \mathcal{L}(S)$.

Inductive step: If |w| = n + 1 then w = (u)v with $u, v \in \mathcal{L}(S)$ and $|u|, |v| \leq n$. Hence the IH holds for u and v.

Then, by IH we have that $v\mathcal{L}(S) \subseteq \mathcal{L}(S)$.

Since $S \to (S)S$ is a production then $(\mathcal{L}(S))\mathcal{L}(S) \subseteq \mathcal{L}(S)$.

 $u \in \mathcal{L}(S)$, then

$$w\mathcal{L}(S) = (u)v\mathcal{L}(S) \subseteq (u)\mathcal{L}(S) \subseteq \mathcal{L}(S).$$

May 7th 2015, Lecture 11

TMV027/DIT321

Example: Balanced Parentheses (Cont.)

Lemma: $\mathcal{L}(S) = \mathcal{L}(E)$.

Proof: (Sketch) Let $w \in \mathcal{L}(S)$ and $x \in \mathcal{L}(E)$.

 $\mathcal{L}(S) \subseteq \mathcal{L}(E)$: By course-of-value induction on |w|. Base case is trivial.

Let |w| = n+1. We have that w = (u)v with $u, v \in \mathcal{L}(S)$ and $|u|, |v| \leq n$.

By IH $u, v \in \mathcal{L}(E)$. Using the productions of E we conclude that $w \in \mathcal{L}(E)$.

 $\mathcal{L}(E) \subseteq \mathcal{L}(S)$: By course-of-value induction on the length of $E \Rightarrow^* x$. If $E \Rightarrow \epsilon = x$ then $x \in \mathcal{L}(S)$.

If $E \Rightarrow EE \Rightarrow^* uv = x$ then by IH $u, v \in \mathcal{L}(S)$ and by previous lemma then $x = uv \in \mathcal{L}(S)\mathcal{L}(S) \subseteq \mathcal{L}(S)$.

If $E \Rightarrow (E) \Rightarrow^* (u) = x$ then by IH $u \in \mathcal{L}(S)$ and $x = (u) \epsilon \in \mathcal{L}(S)$. May 7th 2015, Lecture 11 TMV027/DIT321

Example: Balanced Parentheses (Cont.)

Theorem: The grammar for S is not ambiguous.

Proof: Not trivial!! Let $w \in \{(,)\}^*$.

One tries to show that there is at most one leftmost derivation $S \Rightarrow^* w$. If $w = \epsilon$ then it is trivial.

Otherwise, either w = v and there is no derivation or

 $w = (v \text{ and we have that } S \stackrel{lm}{\Rightarrow} (S)S.$

We now should prove (by induction on
$$|u|$$
) that

Lemma: Given u, for any k, there is at most one leftmost derivation $S\langle \rangle S\rangle^k \stackrel{lm}{\Rightarrow}^* u$.

We use this lemma with v and k = 1 to conclude that there is at most one leftmost derivation $S > S \Rightarrow^* v$.

Then, there is at most one leftmost derivation $S \stackrel{lm}{\Rightarrow} (S)S \stackrel{lm}{\Rightarrow}^* (v = w)$.

May 7th 2015, Lecture 11

Inherent Ambiguity

Definition: A context-free language \mathcal{L} is said to be *inherently ambiguous* if *all* its grammars are ambiguous.

Note: It is enough that 1 grammar for the \mathcal{L} is unambiguous for \mathcal{L} to be unambiguous.

Example: The following language is inherently ambiguous:

$$\mathcal{L} = \{a^n b^n c^m d^m \mid n, m \ge 1\} \cup \{a^n b^m c^m d^n \mid n, m \ge 1\}$$

(See grammar for \mathcal{L} in Lecture 10, slide 22.)

Strings of the form $a^n b^n c^n d^n$ for n > 0 have 2 different leftmost derivations.

See pages 214–215 in the book for the intuition of why \mathcal{L} is inherent ambiguous. The proof is complex!

Regular Grammars

Definition: A grammar where all rules are of the form $A \rightarrow aB$ or $A \rightarrow \epsilon$ is called *left regular*.

Definition: A grammar where all rules are of the form $A \rightarrow Ba$ or $A \rightarrow \epsilon$ is called *right regular*.

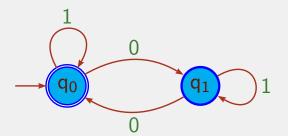
Note: We will see that regular grammars generate the regular languages.

May 7th 2015, Lecture 11

TMV027/DIT321

Example: Regular Grammars

A DFA that generates the language over $\{0, 1\}$ with an even number of 0's:



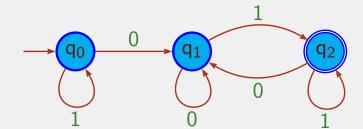
Exercise: What could the left regular grammar be for this language?

Let q_0 be the start variable.

$$egin{array}{rll} q_0 &
ightarrow & \epsilon \mid 0 q_1 \mid 1 q_0 \ q_1 &
ightarrow & 0 q_0 \mid 1 q_1 \end{array}$$

Example: Regular Grammars

Consider the following DFA over $\{0, 1\}$:



Exercise: What could the left regular grammar be for this language? Let q_0 be the start variable.

 $egin{aligned} q_0 &
ightarrow 0q_1 \mid 1q_0 & q_1
ightarrow 0q_1 \mid 1q_2 & q_2
ightarrow \epsilon \mid 0q_1 \mid 1q_2 \ q_0 &
ightarrow 10q_1
ightarrow 100q_1
ightarrow 1001q_2
ightarrow 10010q_1
ightarrow 100101q_2
ightarrow 100101 \end{aligned}$

Exercise: What could the right regular grammar be for this language? Let q_2 be the start variable.

 $q_0 \rightarrow \epsilon \mid q_0 1 \qquad q_1 \rightarrow q_0 0 \mid q_1 0 \mid q_2 0 \qquad q_2 \rightarrow q_1 1 \mid q_2 1$

 $q_2 \Rightarrow q_1 1 \Rightarrow q_2 01 \Rightarrow q_1 101 \Rightarrow q_1 0101 \Rightarrow q_0 00101 \Rightarrow q_0 100101 \Rightarrow 100101$

May 7th 2015, Lecture 11

Overview of Next Lecture (in HC2)

Sections 7–7.2:

- Regular grammars and Chomsky hierarchy;
- Simplifications and normal forms for CFL;
- Pumping lemma for CFL.