Fall 2008

FUNCTIONS

Let A and B be sets. A function from A to B is a set f of ordered pairs of elements (a, b), where $a \in A$ and $b \in B$, so that each element $a \in A$ belongs to exactly one of the pairs in f.

If f is a function from A to B we denote this by

$$f: A \to B$$

We call A the *domain* of f and B the *range* of f.

We often see a function f as a machine that, when we input an element $a \in A$, outputs an element $b \in B$, namely the element that f associates to a. This is denoted as follows:

$$f(a) = b.$$

Example: Let A be a set of three persons, which we call a, b, c. Let f be the function that to each person (element of) A associates her height (in cm). Then f can be regarded as a function $f : A \to \mathbb{N}$, where \mathbb{N} is the set of all natural numbers. If the respective heights of a, b, c are 170, 160 and 180, then the set f consists of the pairs

$$f = \{(a, 170), (b, 160), (c, 180)\}.$$

A different, and much more common, way of expressing this is as follows:

$$f(a) = 170,$$
 $f(b) = 160,$ $f(c) = 180.$

A well known function $f : \mathbb{Z} \to \mathbb{N}$ (where \mathbb{Z} is the set of all integers) is the function that to each integer associates its square. This function is usually described by the equation

$$f(n) = n^2.$$

Observe that if we say that the square root of a number n is a number whose square is n, then we have *not* described a function, since we would be associating both 2 and -2 to 4. In order to define the square root of a number as a function we therefore usually decide to take the non-negative square root. Thus, we set $\sqrt{9} = 3$ (and not ± 3) and then we can regard $g(x) = \sqrt{x}$ as a function.

A function $f: A \to B$ is *injective* if it sends no two different elements in A to the same element in B. Formally, f is injective if $f(a) \neq f(b)$ when $a \neq b$. Equivalently, f is injective if f(a) = f(b) implies a = b.

A function $f : A \to B$ is surjective if it "hits" every element in B, that is, if for every surjective = onto $b \in B$ there exists an $a \in A$ such that f(a) = b.

A function that is both injective and surjective is said to be *bijective*.

injective = one-to-one Suppose that $f: A \to B$ and $g: B \to C$. We define the *composition of* g with f, denoted $g \circ f$, by setting

Unfortunately (for us in this part of the world), due to a historical accident, functions, when composed, are read from right to left.

$$(g \circ f)(x) = g(f(x)).$$

Observe that $g \circ f$ is a function from A to C. In fact, it is enough for the range of f to be a *subset* of the domain of g in order for the composition to be defined. For example, if $f: \mathbb{Z} \to \mathbb{Z}$ is defined by f(n) = 3n - 2 and $g: \mathbb{R} \to \mathbb{R}$ by g(x) = x/2, then $g \circ f: \mathbb{Z} \to \mathbb{R}$ is given by g(f(n)) = (3n - 2)/2.

If $f: A \to B$ is a bijective function, then we can define an *inverse* function to f. This inverse function is denoted f^{-1} and has the property that $f^{-1}(f(a)) = a$ and $f(f^{-1}(b)) = b$ for all $a \in A$ and for all $b \in B$.

Suppose $f : A \to B$ and let S be a subset of A (this is denoted $S \subset A$). The restriction of f to S, usually denoted $f|_S$, is the function with domain S and range B that has the same values on each element of S as f does. In other words, $f|_S$ is still defined by the same rule, but can now only be applied to the elements of S.

If $f: A \to B$, then the *image* of f, denoted Im f, is the set of elements in B that are "hit" by f, that is, the set

$$\operatorname{Im} f = \{ f(a) \mid a \in A \}.$$

For example, if $f : \mathbb{N} \to \mathbb{N}$ is defined by f(x) = 2x, then $\text{Im } f = \{0, 2, 4, 6, \ldots\}$. Observe that a function $f : A \to B$ is surjective if and only if Im f = B.

Some Examples

If $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 3x - 2 then f is both injective and surjective. It is injective because if f(a) = f(b) then 3a - 2 = 3b - 2, so a = b. It is surjective, because for each $b \in \mathbb{R}$ we can find an $a \in \mathbb{R}$ such that f(a) = b, namely a = b/3 + 2/3. Thus, f is bijective, so it has an inverse. The inverse is the function f^{-1} defined by $f^{-1}(x) = x/3 + 2/3$, because $f^{-1}(f(x)) = f^{-1}(3x-2) = (3x-2)/3 + 2/3 = x - 2/3 + 2/3 = x$. You should check for yourself that $f(f^{-1}(x)) = x$.

The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is not surjective, because there is no $a \in \mathbb{R}$ such that f(a) = -1. It is not either injective, because f(-5) = f(5) = 25.

The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$ is both surjective and injective (why?).

The function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x is bijective; its inverse is $f^{-1}(x) = x/2$.

The function $f : \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 2x is injective but *not* surjective, for there is \mathbb{Z} is the set of all integers no $a \in \mathbb{Z}$ such that f(a) = 3.

The function $f : \mathbb{Z} \to \{0, 1\}$ defined by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is even} \\ 1 & \text{if } x \text{ is odd} \end{cases}$$

is surjective, but not injective, since all even numbers are sent to 0 (and all odd numbers to 1).

bijective