Functions

A function or map is often seen as a rule that associates, to each element of a set A, exactly one element of a given set B. Formally, this can be expressed as follows:

Let A and B be sets. A function from A to B is a set f of ordered pairs of elements (a, b), where $a \in A$ and $b \in B$, so that each element $a \in A$ belongs to exactly one of the pairs in f.

If f is a function from A to B we denote this by

$$
f: A \rightarrow B
$$

We call A the domain of f and B the range of f.
We often see a function f as a machine that, when we input an element $a \in A$, outputs an element $b \in B$, namely the element that f associates to a. This is denoted as follows:

$$
f(a)=b .
$$

Example: Let A be a set of three persons, which we call a, b, c. Let f be the function that to each person (element of) A associates her height (in cm). Then f can be regarded as a function $f: A \rightarrow \mathbb{N}$, where \mathbb{N} is the set of all natural numbers. If the respective heights of a, b, c are 170,160 and 180 , then the set f consists of the pairs

$$
f=\{(a, 170),(b, 160),(c, 180)\}
$$

A different, and much more common, way of expressing this is as follows:

$$
f(a)=170, \quad f(b)=160, \quad f(c)=180
$$

A well known function $f: \mathbb{Z} \rightarrow \mathbb{N}$ (where \mathbb{Z} is the set of all integers) is the function that to each integer associates its square. This function is usually described by the equation

$$
f(n)=n^{2}
$$

Observe that if we say that the square root of a number n is a number whose square is n, then we have not described a function, since we would be associating both 2 and -2 to 4 . In order to define the square root of a number as a function we therefore usually decide to take the non-negative square root. Thus, we set $\sqrt{9}=3$ (and not ± 3) and then we can regard $g(x)=\sqrt{x}$ as a function.

A function $f: A \rightarrow B$ is injective if it sends no two different elements in A to the same element in B. Formally, f is injective if $f(a) \neq f(b)$ when $a \neq b$. Equivalently, f is injective if $f(a)=f(b)$ implies $a=b$.

A function $f: A \rightarrow B$ is surjective if it "hits" every element in B, that is, if for every
injective $=$ one-to-one
surjective $=$ onto $b \in B$ there exists an $a \in A$ such that $f(a)=b$.

A function that is both injective and surjective is said to be bijective.

Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$. We define the composition of g with f, denoted $g \circ f$, by setting

$$
(g \circ f)(x)=g(f(x))
$$

Observe that $g \circ f$ is a function from A to C. In fact, it is enough for the range of f to be a subset of the domain of g in order for the composition to be defined. For example, if $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $f(n)=3 n-2$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=x / 2$, then $g \circ f: \mathbb{Z} \rightarrow \mathbb{R}$ is given by $g(f(n))=(3 n-2) / 2$.

If $f: A \rightarrow B$ is a bijective function, then we can define an inverse function to f. This inverse function is denoted f^{-1} and has the property that $f^{-1}(f(a))=a$ and $f\left(f^{-1}(b)\right)=b$ for all $a \in A$ and for all $b \in B$.

Suppose $f: A \rightarrow B$ and let S be a subset of A (this is denoted $S \subset A$). The restriction of f to S, usually denoted $\left.f\right|_{S}$, is the function with domain S and range B that has the same values on each element of S as f does. In other words, $\left.f\right|_{S}$ is still defined by the same rule, but can now only be applied to the elements of S.

If $f: A \rightarrow B$, then the image of f, denoted $\operatorname{Im} f$, is the set of elements in B that are "hit" by f, that is, the set

$$
\operatorname{Im} f=\{f(a) \mid a \in A\}
$$

For example, if $f: \mathbb{N} \rightarrow \mathbb{N}$ is defined by $f(x)=2 x$, then $\operatorname{Im} f=\{0,2,4,6, \ldots\}$. Observe that a function $f: A \rightarrow B$ is surjective if and only if $\operatorname{Im} f=B$.

Some Examples

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=3 x-2$ then f is both injective and surjective. It is injective because if $f(a)=f(b)$ then $3 a-2=3 b-2$, so $a=b$. It is surjective, because for each $b \in \mathbb{R}$ we can find an $a \in \mathbb{R}$ such that $f(a)=b$, namely $a=b / 3+2 / 3$.
Thus, f is bijective, so it has an inverse. The inverse is the function f^{-1} defined by $f^{-1}(x)=x / 3+2 / 3$, because $\left.f^{-1}(f(x))=f^{-1}(3 x-2)\right)=(3 x-2) / 3+2 / 3=x-2 / 3+2 / 3=$ x. You should check for yourself that $f\left(f^{-1}(x)\right)=x$.

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not surjective, because there is no $a \in \mathbb{R}$ such that $f(a)=-1$. It is not either injective, because $f(-5)=f(5)=25$.

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}$ is both surjective and injective (why?).
The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=2 x$ is bijective; its inverse is $f^{-1}(x)=x / 2$.
The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=2 x$ is injective but not surjective, for there is
\mathbb{R} is the set of all
real numbers

The function $f: \mathbb{Z} \rightarrow\{0,1\}$ defined by

$$
f(x)= \begin{cases}0 & \text { if } x \text { is even } \\ 1 & \text { if } x \text { is odd }\end{cases}
$$

is surjective, but not injective, since all even numbers are sent to 0 (and all odd numbers to 1).

