Kurs: MAN321/TMV026 Ändliga automater Plats: M-huset Tid: 08.30-12.30 Datum: 2007-05-31 No help documents Telefonvakt: Thierry Coquand, 7721030 The questions can be answered in english or in swedish. total 30; \geq 13: 3, \geq 19: 4, \geq 25: 5 total 30; \geq 13: G, \geq 21: VG

- 1. What is, mathematically, a context-free Language (1p)? Give, with motivation, an example of a language which is context-free, but not regular (1p) and an example of a language which is not context-free (1p)
- 2. Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA. We recall that we define q.x for $x \in \Sigma^*$ by recursion

$$q.\epsilon = q,$$
 $q.(ax) = (q.a).x$

Explain why we have $q(xy) = (q.x) \cdot y$ for all $x, y \in \Sigma^*$ (2p)

3. Let Σ be $\{0, 1\}$. We recall that the regular expressions are on Σ are given by the grammar

$$E ::= 0 \mid 1 \mid \emptyset \mid \epsilon \mid E + E \mid EE \mid E^*$$

Give a regular expression E such that

$$L(E) = \Sigma^* - L((0+1)^*01) \quad (2p)$$

4. Minimize the following automaton (2p)

	a	b
$\rightarrow 1$	2	3
2	5	6
*3	1	4
*4	6	3
5	2	1
6	5	4

5. Build a DFA that recognizes exactly the word in $\{0,1\}^*$ ending with the string 1010. (2p)

- 6. Consider the regular expression $E = a^*b^* + b^*a^*$. Build the minimal DFA for E (2p).
- 7. Is it true that if L is regular then so is $L^2 L$? Explain why (2p)
- 8. Is the following grammar ambiguous? Why (2p)?

$$S \rightarrow SS \mid aSb \mid ab \mid ba$$

- 9. Give an example of two languages L_1, L_2 such that
 - (a) L_1 is regular, L_2 is not regular and $L_1 \cup L_2$ is regular (1p)
 - (b) L_1 is regular, L_2 is not regular and $L_1 \cap L_2$ is regular and nonempty (1p)
- 10. Give a grammar in Chomsky normal form for $\{a^n b^{2n} c^k \mid k, n > 0\}$ (1p) and $\{a^n b^k a^n \mid k, n > 0\}$ (1p).
- 11. Is the following true of false. Motivate.
 - (a) Any subset of a regular language is regular (1p)
 - (b) If L_n is a family of regular language then $\cup_n L_n$ is regular (1p)
- 12. Explain why $\{a^n \mid n \ge 0\} \cup \{b^n c^n \mid n \ge 0\}$ is not regular (2p).
- 13. We recall that if $L \subseteq \Sigma^*$ is a language then and $a \in \Sigma$ then L/a denotes the language $L/a = \{u \in \Sigma^* \mid au \in L\}$. Explain why if L is regular then so is L/a for any $a \in \Sigma$ (2p). It follows from this that $(L/a)a = \{ua \mid au \in L\}$ is also regular. Explain why (1p). If w is the word $a_1 \ldots a_n$ we denote by shift(w) the word $a_2 \ldots a_n a_1$. (If w is the empty word ϵ then shift(w) is ϵ .) Deduce from the regularity of (L/a)a and (L/b)b that if $L \subseteq \{a, b\}^*$ is regular then so is $\{shift(w) \mid w \in L\}$ (2p).

Kurs: MAN321/TMV026 Ändliga automater och formella språk Plats: M-huset Tid: 08.30-12.30 Datum: 2007-08-27 No help documents Telefonvakt: Thierry Coquand, 7721030 The questions can be answered in english or in swedish. total 30; \geq 13: 3, \geq 19: 4, \geq 25: 5 total 30; \geq 13: G, \geq 21: VG

- 1. Let Σ be an alphabet. What is, mathematically, a deterministic finite automaton on Σ (1p)? Explain what is the language determined by such a finite automaton (1p). Explain why such a language is a context-free language (1p).
- 2. Minimize the following automaton (2p)

	a	b
$\rightarrow 0$	1	3
1	0	3
2	1	4
*3	5	5
4	3	3
*5	5	5

- 3. Build a NFA with 3 states that accepts the language $\{ab, abc\}^*$. (2p)
- 4. Build a DFA corresponding to the regular expression $(ab)^* + a^*$. (3p)
- 5. Let Σ be $\{0, 1\}$. We recall that the regular expressions are on Σ are given by the grammar

 $E ::= 0 \mid 1 \mid \emptyset \mid \epsilon \mid E + E \mid EE \mid E^*$

Give a regular expression E such that

$$L(E) = \Sigma^* - L(10(0+1)^*) \quad (2p)$$

- 6. Build a DFA that recognizes exactly the word in $\{0,1\}^*$ ending with the string 1110. (2p)
- 7. Is the following grammar ambiguous? Why (2p)?

 $S \to AB \mid aaB, \qquad A \ \to \ a \mid Aa, \qquad B \to b$

Construct an unambiguous grammar which is equivalent to this grammar (2p).

8. Consider the grammar

 $S \rightarrow aaB, \quad A \rightarrow bBb \mid \epsilon, \quad B \rightarrow Aa$

Show that the string *aabbabba* is *not* in the language generated by this grammar (3p).

- 9. Find context-free grammars for the languages
 - (a) $L = \{ a^n b^n c^k \mid n \le k \}$ (1p)
 - (b) $L = \{ a^n b^m \mid n \neq m \}$ (1p)
- 10. Let L, M, N be languages on an alphabet Σ^* (that is, we have L, M, N subsets of Σ^*). Explain why we have $L(M \cap N) \subseteq LM \cap LN$ (2p). Give an example showing that we do not have $LM \cap LN \subseteq L(M \cap N)$ in general (2p).
- 11. Let Σ be an alphabet and let L_1, L_2 be subsets of Σ^* . Assume that $L_1 \cap L_2 = \emptyset$ and L_1 is finite and that $L_1 \cup L_2$ is regular. Can we deduce that L_2 is regular (3p)?